Skip to main content

Advertisement

Log in

Soil volume and carbon storage shifts in drained and afforested wetlands of the Paraná River Delta

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Wetland ecosystems have a high carbon storage potential as a result of high primary productivity and low decomposition rates dictated by water saturation. In the herbaceous wetlands of the Paraná River Delta, drainage and afforestation with poplars represents one of the dominant land uses. We explored the effects of these interventions on the volume and carbon storage of the young sedimentary soils of the region. At three sites we identified paired stands occupying similar landscape positions and soil types but subject to natural flooding and covered by natural herbaceous communities or drainage and flood control by dikes and covered by poplar plantations established 12, 17 and 19 years ago. Soil sampling at these sites revealed a reduction of the litter compartment (−86 %) and decreasing volume and porosity of its underlying mineral layer (0–10 cm in the wetland reduced to 0–4 cm in the plantation). Our comparisons of carbon storage accounted for these volumetric shifts by using accumulated mineral mass rather than depth as a reference, showing that tree plantations gained in the mineral soil (22 Mg C ha−1) almost as much as what they lost in the litter. These gains were particularly large at intermediate depths (4–43 cm in the plantations) were soil porosity remained unaffected and C was raised by 64 % explained by (1) the pulse of inputs from overlaying litter and organic layers subject to rapid decomposition and mobilization after drainage and (2) root colonization, since tree plantations had 75 % of their fine root biomass at these intermediate soil depths, whereas roots in the wetlands did not explore the mineral soil profile and were completely confined to the organic layer. A neutral C balance following wetland drainage and afforestation resulted from the opposing effects of aeration, favoring decomposition in the organic layer, root colonization and organic matter stabilization, favoring its accumulation in the mineral soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson SP, Dietrich WE, Brimhall GH (2002) Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geol Soc Am Bull 114:1143–1158

    Google Scholar 

  • Arevalo C, Bhatti J, Chang S, Sidders D (2009) Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. For Ecol Manage 257:1776–1785

    Article  Google Scholar 

  • Aust WM, Tippett MD, Burger JA, McKee WH (1995) Compaction and rutting during harvesting affect better drained soils more than poorly drained soils on wet pine flats. South J Appl For 19:72–77

    Google Scholar 

  • Berthrong S, Piñeiro G, Jobbagy E & Jackson R (2012) Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol Appl. doi:10.1890/10-2210.1

  • Bó RF (2006) Situación ambiental en la ecorregión Delta e Islas del Paraná. In: Brown A, Martínez Ortiz U, Acerbi M, Corchera J (eds) La Situación Ambiental Argentina. Fundación Vida Silvestre Argentina, Buenos Aires, p 587

  • Bonfils C (1962) Los suelos del Delta del río Paraná “Factores generadores, clasificación y uso”. Revista de Investigaciones agrícolas TXVI, N°3, p 370

  • Bouyoucos GJ (1927) The hydrometer as a new method for the mechanical analysis of soils. Soil Sci Soc Am J 23:343–352

    Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54(5):464–465

    Article  Google Scholar 

  • Braekke FH (2005) Root biomass changes after drainage and fertilization of a low-shrub pine bog. Plant Soil 143:33–43

    Article  Google Scholar 

  • Brimhall GH, Lewis HCJ, Ford C, Bratt J, Taylor G, Warren O (1991) Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in laterization. Geoderma 51:51–91

    Article  Google Scholar 

  • Brimhall GH, Chadwick OA, Lewis CJ, Compston W, Williams IS, Danti KJ, Dietrich WE, Power ME, Hendricks D, Bratt J (1992) Deformational mass transport and invasive processes in soil evolution. Science 255:695–702

    Article  Google Scholar 

  • Campbell DJ, Henshall JK (1991) Bulk density. In: Smith KA, Mullins CE (eds) Soil analysis: physical methods. Marcel Dekker, New York, pp 329–366

    Google Scholar 

  • Cerisola CI, García MG, Filgueira RR (2005) Distribución de la porosidad de un suelo franco arcilloso (Alfisol) en condiciones semiáridas después de 15 años bajo siembra directa. Ciencia del suelo (Argentina) 23:167–178

    Google Scholar 

  • Chan KY, Heenan DP (1999) Microbial-induced soil aggregate stability under different crop rotations. Biol Fertil Soils 30:29–32

    Article  Google Scholar 

  • Cheng W (2009) Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biol Biochem 41:1795–1801

    Article  Google Scholar 

  • Coleman MD, Friend AL, Kern CC (2004) Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation. Tree Physiol 24(12):1347–1357

    Article  Google Scholar 

  • Costanza R, d’Arge R, Groot RD, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neil RV, Paruelo J, Raskin RG, Sutton P, Belt MVD (1997) The value of the world’s ecosystem services and natural capital. Nat Geosci 387:253–260

    Google Scholar 

  • Davidson E, Ackerman I (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20(3):161–193

    Article  Google Scholar 

  • Davidsson TE, Leonardson L (1997) Seasonal dynamics of denitrification activity in two water meadows. Hydrobiologia 364:189–198

    Google Scholar 

  • Deurer M, Grinev D, Young I, Clothier BE, Müller K (2009) The impact of soil carbon management on soil macropore structure: a comparison of two apple orchard systems in New Zealand. Eur J Soil Sci 60:945–955

    Article  Google Scholar 

  • Dowell RC, Gibbins D, Rhoads JL, Pallardy SG (2009) Biomass productions physiology and soil carbon dynamics in short-rotation-grown Populus deltoides an P. deltoides × P. nigra hybrids. For Ecol Manage 257:134–142

    Article  Google Scholar 

  • DPF MINAGRI (2011) Plantaciones forestales en las islas del Delta del Paraná. http://deltaforestal.blogspot.com/2012/01/plantaciones-forestales-en-las-islas.html

  • Dunne EJ, McKee KA, Clark MW, Grunwald S, Reddy KR (2007) Phosphorus in agricultural ditch soil and potential implications for water quality. J Soil Water Conserv 62:244–252

    Google Scholar 

  • Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538

    Article  Google Scholar 

  • Ellert BH, Janzen HH, McConkey BG (2001) Measuring and comparing soil carbon storage. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment methods for soil carbon. Lewis Publishers, Boca Raton, pp 131–144

    Google Scholar 

  • Elliot ET, Heil JW, Kelly EF, Monger HC (1999) Soil structural and other physical properties. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University press, New York

    Google Scholar 

  • Engelaar WMHG, Matsumaru T, Yoneyama T (2000) Combined effects of soil waterlogging and compaction on rice (Oryza sativa L.) growth, soil aeration, soil N transformations and 15N discrimination. Biol Fertil Soils 32:484–493

    Article  Google Scholar 

  • Evrendilek F, Celik I, Kilic S (2004) Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. J Arid Environ 59:743–752

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, USA

    Book  Google Scholar 

  • Gartzia-Bengoetxea N, González-Arias A, Merino A, Martínez de Arano I (2009) Soil organic matter in soil physical fractions in adjacent semi-natural and cultivated stands in temperate Atlantic forests. Soil Biol Biochem 41:1674–1683

    Article  Google Scholar 

  • Gebhardt S, Fleige H, Horn R (2009) Shrinkage processes of a drained riparian peatland with subsidence morphology. J Soils Sediments 34:484–493

    Google Scholar 

  • Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB (2002) Nonlinear grassland responses to past and future atmospheric CO2. Nature 417:279–282

    Article  Google Scholar 

  • Gill JS, Sale PWG, Peries RR, Tang C (2009) Changes in soil physical properties and crop root growth in dense sodic subsoil following incorporation of organic amendments. Field Crops Res 114:137–146

    Article  Google Scholar 

  • Gómez LA, Ferrao F (1986) Carta semidetallada de suelos del área Arroyo Ñancay-Brazo Largo. Escala 1:50000. Instituto Nacional de Tecnología Agropecuaria, Castelar, p 160

  • Grigal DF, Berguson WE (1998) Soil carbon changes associated with short-rotation systems. Biomass Bioenergy 14:371–377

    Article  Google Scholar 

  • Grønlund A, Hauge A, Hovde A, Rasse DP (2008) Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods. Nutr Cycl Agroecosyst 81:157–167

    Article  Google Scholar 

  • Gutknecht JLM, Goodman RM, Balser TC (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289:17–34

    Article  Google Scholar 

  • Hadas A (2006) Directional strength in aggregates as affected by aggregate volume and by a wet/dry cycle. Eur J Soil Sci 41:85–93

    Google Scholar 

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82:121–145

    Article  Google Scholar 

  • Hansen EA (1993) Soil carbon sequestration beneath hybrid poplar plantations in the North Central United States. Biomass Bioenergy 5(6):431–436

    Article  Google Scholar 

  • Hargreaves R, Milne R, Cannel MGR (2003) Carbon balance of afforested peatland in Scotland. Forestry 76:299–317

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of nutrients by plants: consequences across scales. Ecology 85:2380–2389

    Article  Google Scholar 

  • Kandus P (1997) Análisis de patrones de vegetación a escala regional en el Bajo Delta bonaerense del río Paraná (Argentina). FCEN, UBA. Universidad de Buenos Aires, Buenos Aires, p 241

  • Kercher SM, Zedler JB (2004) Flood tolerance in wetland angiosperms: a comparison of invasive and noninvasive species. Aquat Bot 80:89–102

    Article  Google Scholar 

  • Kool DM, Buurman P, Hoekman DH (2006) Oxidation and compaction of a collapsed peat dome in central Kalimantan. Geoderma 137:217–225

    Article  Google Scholar 

  • Laganiere J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453

    Article  Google Scholar 

  • Lal R (2007) Carbon management in agricultural soils. Mitig Adapt Strat Glob Change 12:303–322

    Article  Google Scholar 

  • Lee J, Hopmans JW, Rolston DE, Baer SG, Six J (2009) Determining soil carbon stock changes: simple bulk density corrections fail. Agric Ecosyst Environ 134:251–256

    Article  Google Scholar 

  • Lodhyal LS, Singh RP, Singh SP (1995a) Structure and function of an age series of poplar plantations in central Himalaya. I Dry matters dynamics. Ann Bot 76:191–199

    Article  Google Scholar 

  • Lodhyal LS, Singh RP, Singh SP (1995b) Structure and function of an age series of poplar plantations in central Himalaya. II Nutrient dynamics. Ann Bot 76:201–210

    Article  Google Scholar 

  • Malvárez AI (1997) Las comunidades vegetales del Delta del Río Paraná. Su relación con factores ambientales y patrones del paisaje. FCEN-UBA. Universidad de Buenos Aires, Buenos Aires, p 167

  • Mausbach MJ, Parker WB (2001) Background and history of the concept of hydric soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes, and classification. Lewis, New York, pp 19–34

    Google Scholar 

  • Megonigal JP, Hines MEV, Visscher PT (2005) Anaerobic metabolism: linkages to trace gasses and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York

    Google Scholar 

  • Neary DG, Ice GG, Jackson CR (2009) Linkages between forest soils and water quality and quantity. For Ecol Manage 258:2269–2281

    Article  Google Scholar 

  • Nosetto MD, Jobbagy EG, Paruelo JM (2006) Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. J Arid Environ 67:142–156

    Article  Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    Article  Google Scholar 

  • Olila OG, Reddy KR, Stiles DL (1997) Influence of draining on soil phosphorus forms and distribution in a constructed wetland. Ecol Eng 9:157–169

    Article  Google Scholar 

  • Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, The Netherlands

    Book  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manage 168:241–257

    Article  Google Scholar 

  • Pereyra FP, Baumann V, Altinier V, Ferrer J, Tchilinguirian P (2004) Génesis de suelos y evolución del paisaje en el Delta del río Paraná. Revista de la Asociación Geológica Argentina 59:229–242

    Google Scholar 

  • Pillai UP, McGarry D (1999) Structure repair of a compacted vertisol with wet-dry cycles and crops. Soil Sci Soc Am J 63:232–239

    Article  Google Scholar 

  • Pires LF, Reichardt K, Cooper M, Cassaro FAM, Dias NMP, Bacchi OOS (2009) Pore system changes of damaged Brazilian oxisols and litosols induced by wet-dry cycles as seen in 2-D micromorphologic image analysis. Anais da Academia Brasileira de Ciencias 81:151–161

    Article  Google Scholar 

  • Richter DD Jr, Markewitz D (2001) Understanding soil change. Cambridge University Press, Cambridge

    Google Scholar 

  • Rong M, Zeng D, Ya-ling H, Lu-Ju L, Dan Y (2010) Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 332:277–287

    Article  Google Scholar 

  • Ross DJ, Tate KR, Scott NA, Feltham CW (1999) Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol Biochem 31:803–813

    Article  Google Scholar 

  • Rovdan E, Witkowska-Walczak B, Walczak R, Sawiñski C (2002) Changes in the hydrophysical properties of peat soils under anthropogenic evolution. Int Agrophysics 16:219–226

    Google Scholar 

  • Ruehlmann J, Körschens M (2009) Calculating the effect of soil organic matter concentration on soil bulk density. Soil Sci Soc Am J 73:876–885

    Article  Google Scholar 

  • Sartori F, Lal R, Ebinger H, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosecuence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122:325–339

    Article  Google Scholar 

  • Schanz T (2005) Unsaturated soils: experimental studies. Springer, Weimar

    Book  Google Scholar 

  • Sigua GC, Williams MJ, Coleman SW, Starks R (2006) Nitrogen and phosphorus status of soils and trophic state of lakes associated with forage-based beef cattle operations in Florida. J Environ Qual 35:240–252

    Article  Google Scholar 

  • Sigua GC, Coleman SW, Albano JP (2009) Beef cattle pasture to wetland reconversion: impact on soil organic carbon and phosphorus dynamics. Ecol Eng 35:1231–1236

    Article  Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy. USDA-Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Stepanauskas R, Davidsson ET, Leonardson L (1996) Nitrogen transformations in wetland soil cores measure by 15N isotope pairing and dilution at four infiltration rates. Appl Environ Microbiol 62:2345–2351

    Google Scholar 

  • Toriyama J, Kato T, Siregar CA, Siringoringo HH, Ohta S (2011) Comparison of depth- and mass-based approaches for estimating changes in forest soil carbon stocks: a case study in young plantations and secondary forests in Wet Java, Indonesia. For Ecol Manage 262:1659–1667

    Article  Google Scholar 

  • Vandenbygaart AJ (2006) Monitoring soil organic carbon stock changes in agricultural landscapes: issues and a proposed approach. Can J Soil Sci 86:451–463

    Article  Google Scholar 

  • Vandenbygaart AJ, Angers DA (2006) Towards accurate measurements of soil organic carbon stock change in agroecosystems. Can J Soil Sci 86:465–471

    Article  Google Scholar 

  • Vesterdal L, Ritter E, Gundersen P (2002) Change in soil organic carbon following afforestation of former arable land. For Ecol Manage 169:137–147

    Article  Google Scholar 

  • Vörösmarty CJ, Syvitski JP, Day J, Sherbinin DA, Giosan L, Paola C (2009) Battling to save the world’s river deltas. Bull At Sci 65:31–43

    Article  Google Scholar 

  • Wermter R, Gómez LA, Nakama V, Ramallos D (1977) Carta de suelos del Delta Entrerriano. INTA, Castelar

    Google Scholar 

  • Wills JM, Sundström E, Gardiner JJ, Keane M (1999) The effect of cultivation technique on root and shoot biomass production by young Sitka spruce (Picea sitchensis Carr.) trees on surface water gley soils. Plant Soil 217:79–90

    Article  Google Scholar 

  • Wösten H, Ismail A, van Wijk A (1997) Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78:25–36

    Article  Google Scholar 

  • Wösten H, Hooijer AW, Siderius C, Rais D, Idris A, Rieley J (2006) Tropical Peatland water management modelling of the Air Hitam Laut catchment in Indonesia. Int J River Basin Manag 4:233–244

    Article  Google Scholar 

  • Wuest SB (2009) Correction of bulk density and sampling methods biases using soil mass per unit area. Soil Sci Soc Am J 73:312–316

    Article  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Englewoods Cliff, New Jersey

    Google Scholar 

Download references

Acknowledgments

We are grateful for Mark Brinson, Marta Borro, Carolina Pérez, Manuel García Cortés, Ezequiel Fernández Tschieder, Javier Álvarez and Nicolás Del Tufo for field, GIS and laboratory assistance. We thank for farm owners and managers Cosentino J. L., Gómez A., Enzunza P. and Wosekian E. provided access to plantations, wetlands and helpful information. This research was supported by National Forest Program (PNFOR41241) and strategic area of environmental management (AEGA223022) of Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina) and Inter American Institute for Global Change research (CRN2031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darío S. Ceballos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceballos, D.S., Frangi, J. & Jobbágy, E.G. Soil volume and carbon storage shifts in drained and afforested wetlands of the Paraná River Delta. Biogeochemistry 112, 359–372 (2013). https://doi.org/10.1007/s10533-012-9731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9731-2

Keywords

Navigation