Skip to main content

Advertisement

Log in

Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Drainage and cultivation of peat soils stimulates soil organic matter (SOM) mineralization, which substantially increases CO2 emissions from soils. Large uncertainties are associated with this CO2 flux, and little data are available, especially in Norway. The objective of the present research was to estimate C losses from cultivated peatlands in West Norway by three independent methods: (1) long-term monitoring of subsidence rates, (2) changes in ash contents, and (3) soil CO2 flux measurements. Subsidence of cultivated peat soils averaged about 2.5 cm year−1. We estimated that peat loss and compaction were respectively responsible for 38% and 62% of the total subsidence during a 25-year period after drainage. Based on this estimate the corresponding C loss equals 0.80 kg C m−2 year−1. The observed increase in mineral concentration of the topsoil of cultivated peat is proportional to their C loss, providing no mineral particles other than lime and fertilizers are added to the soil. Using this novel approach across 11 sites, we estimated a mean C loss of 0.86 kg C m−2 year−1. Soil CO2 flux measurements, corrected for autotrophic respiration, yielded a C loss estimate from cultivated peat soils of 0.60 kg C m−2 year−1. The three methods yielded fairly similar estimates of C losses from Norwegian cultivated peatlands. Cultivated peatlands in Norway cover an estimated 63,000 ha. Total annual C losses from peat degradation were estimated to range between 1.8 and 2 million tons CO2 year−1, which equals about 3–4% of total anthropogenic greenhouse gas emissions from Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J Ecol 74:755–774

    Article  CAS  Google Scholar 

  • Behrendt A, Mundel G, Hölzel D (1994) Kohlenstoff-und Stickstoffumsatz in Niedermoorböden und ihre Ermittlung über Lysimeterversuche. Z. Kulturtechn. Landentw 35:200–208

    Google Scholar 

  • Berglund K (1989) Ytsänkning på mosstorvjord. Sammanställning av material från Lidhult, Jönköpings län. Swedish University of Agricultural Sciences, Uppsala. Avdelningen för lantbrukets hydroteknik, avdelningsmeddelande 89,3 (in Swedish)

  • Dirks BOM, Hensen A, Goudriaan J (2000) Effect of drainage on CO2 exchange patterns in an intensively managed peat pasture. Climate Res 14:57–63

    Article  Google Scholar 

  • Eggelsmann R (1976) Peat consumption under influence of climate, soil condition and utilization. In: Proceedings of the fifth international peat congress, vol 1. Poznan, Poland, pp 233–247

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Frøseth TA, Celius R (1991) Myrsynking på Moldsatd. Rapport om måleresultater for siste periode 1983 - 1988 og samlet oversikt for 1951 - 88. Rapport fra SFL Kvithamar

  • GEFOS (1998) Greenhouse gas emissions from farmed organic soils. Final Report from EU project no: ENV4-CT95-0035. Reporting period 1996–1998

  • Grønlund A, Sveistrup TE, Søvik AK, Rasse DP, Kløve B (2006) Degradation of cultivated peat soils in northern Norway based on field scale CO2, N2O and CH4 emission measurements. Arch Agron Soil Sci 52:149–159

    Article  CAS  Google Scholar 

  • Hovde O (1987) Myrsynking. Resultater av kontroll gjennom 32 år på Moldstad, Smøla. Jord og Myr, 2 International Peat Society Shttp://www.peatsociety.org/index.php?id=101

  • Johansen A (1997) Myrarealer og torvressurser I Norge. Jordforsk report 1/97, 21 pp. ISBN no 82-7467-214-3

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands. Background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society. ISBN 951-97744-8-3

  • Kasimir-Klemedtsson A, Klemedtsson L, Berglund K, Martikainen P, Silvola J, Oenema O (1997) Greenhouse gas emissions from farmed organic soils: a review. Soil Use Manage 13:245–250

    Article  Google Scholar 

  • Leifeld J, Bassin S, Fuhrer J (2005) Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agric Ecosyst Environ 105:255–266

    Article  CAS  Google Scholar 

  • Maljanen M, Martikainen PJ, Walden J, Silvola J (2001) CO2 exchange in an organic field growing barley or grass in eastern Finland. Glob Chang Biol 7:679–692

    Article  Google Scholar 

  • Minkkinen K, Laine J (1998) Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J For Res 28:1267–1275

    Article  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NG (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36

    Article  Google Scholar 

  • Murayama S, Abubakar Z (1996) Decomposition of tropical peat soils. 2. Estimation of in situ decomposition by measurement of CO2 flux. Jpn Agric Res Q 30:153–158

    Google Scholar 

  • Neufeldt H (2005) Carbon stocks and sequestration potentials of agricultural soils in the federal state of Baden-Württmberg, SW Germany. J Plant Nutr Soil Sci 168:202–211

    Article  CAS  Google Scholar 

  • Nieveen JP, Campbell DI, Schipper LA, Blair IJ (2005) Carbon exchange of grazed pasture on a drained peat soil. Glob Chang Biol 11:607–618

    Article  Google Scholar 

  • Øien A (1988) The relationship between bulk density and humus content of air-dried, sifted cultivated soil (English summary). Jord og myr 3:78–84

    Google Scholar 

  • Pietola L, Alakukku L (2005) Root growth dynamics and biomass input by Nordic annual field crops. Agric Ecosyst Environ 108:135–144

    Article  Google Scholar 

  • Schipper LA, McLeod M (2002) Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand. Soil Use Manage 18:91–93

    Article  Google Scholar 

  • Sorteberg A (1983) Myrenes synking etter oppdyrking/ omgrøfting. En 30 års undersøkelse av en del kystmyrer. Jord og myr 4:141–154

    Google Scholar 

  • Von Post L (1922) Sveriges geologiska undersøknings torvinventering och nogre av dess hittills vunna resultat. Sv Mosskulturfør Tidskr 1:1–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Grønlund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grønlund, A., Hauge, A., Hovde, A. et al. Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods. Nutr Cycl Agroecosyst 81, 157–167 (2008). https://doi.org/10.1007/s10705-008-9171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-008-9171-5

Keywords

Navigation