Skip to main content
Log in

Solution-state 2D NMR of Ball-milled Plant Cell Wall Gels in DMSO-d 6

  • Published:
BioEnergy Research Aims and scope Submit manuscript

A Protocol for this article was published on 02 August 2012

Abstract

Although finely divided ball-milled whole cell walls do not completely dissolve in dimethylsulfoxide (DMSO), they readily swell producing a gel. Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) of this gel, produced directly in the NMR tube, provides an interpretable structural fingerprint of the polysaccharide and lignin components of the wall without actual solubilization, and without structural modification beyond that inflicted by the ball milling and ultrasonication steps. Since the cellulose is highly crystalline and difficult to swell, the component may be under-represented in the spectra. The method however provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. With the new potential for chemometric analysis using the 2D NMR fingerprint, this method may find application as a secondary screen for selecting biomass lines and for optimizing biomass processing and conversion efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ac2O:

acetic anhydride

DMSO:

dimethylsulfoxide

DMSO-d6 :

perdeutero-dimethylsulfoxide

2D:

two-dimensional

FA:

ferulate

G:

guaiacyl

H:

p-hydroxyphenyl

HSQC:

heteronuclear single quantum coherence

HMQC:

heteronuclear multiple quantum coherence

NMR:

nuclear magnetic resonance (spectroscopy)

NMI:

N-methylimidazole

NS:

number of scans

PCA:

p-coumarate

PB:

p-hydroxybenzoate

S:

syringyl

TLC:

thin layer chromatography

References

  1. Ass BAP, Frollini E, Heinze T (2004) Studies on the homogeneous acetylation of cellulose in the novel solvent dimethyl sulfoxide/tetrabuytlammonium fluoride trihydrate. Macromlecular Bioscience 4:1008–1013

    Article  CAS  Google Scholar 

  2. Bardet M, Lundquist K, Parkas J, Robert D, von Unge S (2006) C-13 assignments of the carbon atoms in the aromatic rings of lignin model compounds of the arylglycerol beta-aryl ether type. Magn Reson Chem 44(10):976–979

    Article  PubMed  CAS  Google Scholar 

  3. Björkman A (1954) Isolation of lignin from finely divided wood with neutral solvents. Nature 174:1057–1058

    Article  Google Scholar 

  4. Boerjan W, Ralph J, Baucher M (2003) Lignin Biosynthesis. Annu Rev Plant Biol 54:519–549

    Article  PubMed  CAS  Google Scholar 

  5. Capanema EA, Balakshin MY, Kadla JF (2005) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agr Food Chem 53(25):9639–9649

    Article  CAS  Google Scholar 

  6. Davis AL, Hoffmann RA, Russell AL, Debet M (1995) H-1-NMR and C-13-NMR characterization of the digalactosylmannopentaose liberated from legume seed galactomannan by beta-mannanase action. Carbohydr Res 271(1):43–54

    Article  PubMed  CAS  Google Scholar 

  7. del Rio JC, Gutierrez A, Martinez AT (2004) Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18(11):1181–1185

    Article  PubMed  CAS  Google Scholar 

  8. del Rio JC, Marques G, Rencoret J, Martinez AT, Gutierrez A (2007) Occurrence of naturally acetylated lignin units. J Agr Food Chem 55(14):5461–5468

    Article  CAS  Google Scholar 

  9. Fengel D, Wegener G (1989) Wood. Chemistry, ultrastructure, reactions. Berlin-New York, Walter De Gruyter

    Google Scholar 

  10. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9(1):63–69

    Article  CAS  Google Scholar 

  11. Hafrén J, Westermark U, Lennholm H, Terashima N (2002) Formation of 13C-enriched cell-wall DHP using isolated soft xylem from Picea abies. Holzforschung 56:585–591

    Article  Google Scholar 

  12. Hedenström M, Wiklund S, Ralph J, Edlund U, Sundberg B (2007) A novel approach for analysis of poplar wood using two-dimensional NMR spectroscopy on dissolved whole cell walls in combination with chemometrics Physiol Plantarum 130(4): XIth Cell Wall Meeting, Abstract 22

  13. Ibarra D, Chavez MI, Rencoret J, del Rio JC, Gutierrez A, Romero J, Camarero S, Martinez MJ, Jimenez-Barbero J, Martinez AT (2007) Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. J Agr Food Chem 55(9):3477–3490

    Article  CAS  Google Scholar 

  14. Kim H, Ralph J (2005) Simplified preparation of coniferyl and sinapyl alcohols. J Agr Food Chem 53(9):3693–3695

    Article  CAS  Google Scholar 

  15. Kohler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314

    Article  PubMed  CAS  Google Scholar 

  16. Kupče E, Freeman R (2007) Compensated adiabatic inversion pulses: broadband INEPT and HSQC. J Magn Reson 187:258–265

    Article  PubMed  CAS  Google Scholar 

  17. Lapierre C, Lallemand JY, Monties B (1982) Evidence of poplar lignin heterogeneity by combination of carbon-13 and proton NMR spectroscopy. Holzforschung 36(6):275–282

    Article  CAS  Google Scholar 

  18. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci 100(8):4939–4944

    Article  PubMed  CAS  Google Scholar 

  19. Liebert TF, Heinze TJ (2001) Exploitation of reactivity and selectivity in cellulose functionalization using unconventional media for the design of products showing new superstructures. Biomacromolecules 2(4):1124–1132

    Article  PubMed  CAS  Google Scholar 

  20. Lu F, Ralph J (1998) The DFRC method for lignin analysis. Part 2. Monomers from isolated lignins. J Agr Food Chem 46(2):547–552

    CAS  Google Scholar 

  21. Lu F, Ralph J (2002) Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf. Chem Commun 11:90–91

    Article  CAS  Google Scholar 

  22. Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls; high-resolution solution-state NMR. Plant J 35(4):535–544

    Article  PubMed  CAS  Google Scholar 

  23. Lu F, Ralph J, Morreel K, Messens E, Boerjan W (2004) Preparation and relevance of a cross-coupling product between sinapyl alcohol and sinapyl p-hydroxybenzoate. Org Biomol Chem 2:2888–2890

    Article  PubMed  CAS  Google Scholar 

  24. Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22

    CAS  Google Scholar 

  25. Mathias LJ, Davis RD, Steadman SJ, Jarrett WL (2004) Evaluation of reactions of a dilute cross-linker using solution nuclear magnetic resonance spectroscopy with isotopically labeled cross-linkers. Macromolecules 37:3699–3706

    Article  CAS  Google Scholar 

  26. Miguel YR, Bampos N, Nalin de Silva KM, Richards SA, Sanders JKM (1998) Gel phase MAS 1H NMR as a probe for supramolecular interactions at the solid-liquid interface. Chem Commun 2267–2268

  27. Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    Article  PubMed  CAS  Google Scholar 

  28. Pu YQ, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27(1):23–33

    Article  CAS  Google Scholar 

  29. Quideau S, Ralph J (1992) Facile large-scale synthesis of coniferyl, sinapyl, and p-coumaryl alcohol. J Agr Food Chem 40(7):1108–1110

    Article  CAS  Google Scholar 

  30. Ralph J (1996) An unusual lignin from Kenaf. J Nat Prod 59(4):341–342

    Article  CAS  Google Scholar 

  31. Ralph J, Lu F (1998) The DFRC method for lignin analysis. Part 6. A modified method to determine acetate regiochemistry on native and isolated lignins. J Agr Food Chem 46(11):4616–4619

    Article  CAS  Google Scholar 

  32. Ralph J, Lu F (2004) Cryoprobe 3D NMR of acetylated ball-milled pine cell walls. Org Biomol Chem 2(19):2714–2715

    Article  PubMed  CAS  Google Scholar 

  33. Ralph J, Landucci LL, Argyropoulos DS (2008) NMR of Lignins. In: Heitner C, Dimmel DR (ed) Lignins. New York, NY, Marcel Dekker (in press)

  34. Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung H-JG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116(21):9448–9456

    Article  CAS  Google Scholar 

  35. Ralph J, MacKay JJ, Hatfield RD, O’Malley DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine mutant. Science 277:235–239

    Article  PubMed  CAS  Google Scholar 

  36. Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004a) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Revs 3(1):79–96

    Article  CAS  Google Scholar 

  37. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH et al (2004b) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Revs 3(1):29–60

    Article  CAS  Google Scholar 

  38. Ralph J, Marita JM, Ralph SA, Hatfield RD, Lu F, Ede RM, Peng J, Quideau S, Helm RF, Grabber JH et al (1999) Solution-state NMR of lignins. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. Atlanta, GA, TAPPI Press, pp 55–108

    Google Scholar 

  39. Ralph SA, Landucci LL, Ralph J 2005. NMR Database of Lignin and Cell Wall Model Compounds. Available over Internet at http://ars.usda.gov/Services/docs.htm?docid=10429 (previously http://www.dfrc.ars.usda.gov/software.html), updated at least annually since 1993

  40. Sarkanen KV, Chang H-M, Allan GG (1967) Species variation in lignins. III. Hardwood lignins. Tappi 50(12):587–590

    CAS  Google Scholar 

  41. Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2(2):145–152

    Article  PubMed  CAS  Google Scholar 

  42. Syrjänen K, Brunow G (2000) Regioselectivity in lignin biosynthesis. The influence of dimerization and cross-coupling. J Chem Soc Perkin Trans 1(2):183–187

    Article  Google Scholar 

  43. Tanahashi M, Takeuchi H, Higuchi T (1976) Dehydrogenative polymerization of 3,5-disubstituted p-coumaryl alcohols. Wood Res 61:44–53

    CAS  Google Scholar 

  44. Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr KM, Nanayakkara B, Te Kiri L (2007) Modifying lignin in conifers: The role of HCT during tracheary element formation in Pinus radiata. Proc Natl Acad Sci 104(28):11856–11861

    Article  PubMed  CAS  Google Scholar 

  45. Willker W, Leibfritz D, Kerssebaum R, Bermel W (1992) Gradient selection in inverse heteronuclear correlation spectroscopy. Magn Reson Chem 31:287–292

    Article  Google Scholar 

  46. Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS (2007) Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids. Biomacromolecules 8(12):3740–3748

    Article  PubMed  CAS  Google Scholar 

  47. Yelle DJ, Ralph J, Frihart CR (2008) Characterization of non-derivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Reson Chem (in press)

  48. Zhang L, Gellerstedt G (2001) NMR observation of a new lignin structure, a spiro-dienone. Chem Commun 2424:2744–2745

    Article  CAS  Google Scholar 

  49. Zhang L, Gellerstedt G, Ralph J, Lu F (2006) NMR studies on the occurrence of spirodienone structures in lignins. J Wood Chem Technol 26(1):65–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Paul Schatz for the locust bean gum sample preparation, to Dan Yelle (U.S. Forest Products Laboratory, Madison, WI) for providing the aspen sample and grinding kenaf bast fiber, and to Fachuang Lu for advice on his cell wall dissolution method. This research was supported by the Office of Science (BER), U.S. Dept. of Energy, Interagency agreement No. DE-AI02-06ER64299. This study made use of 750 and 500 MHz instruments at the National Magnetic Resonance Facility at Madison, which is supported by National Institutes of Health grants P41RR02301 (Biomedical Research Technology Program, National Center for Research Resources) and P41GM66326 (National Institute of General Medical Sciences). Equipment in the facility was purchased with funds from the University of Wisconsin, the National Institutes of Health (P41GM66326, P41RR02301, RR02781, RR08438), the National Science Foundation (DMB-8415048, BIR-9214394), and the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Ralph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Ralph, J. & Akiyama, T. Solution-state 2D NMR of Ball-milled Plant Cell Wall Gels in DMSO-d 6 . Bioenerg. Res. 1, 56–66 (2008). https://doi.org/10.1007/s12155-008-9004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-008-9004-z

Keywords

Navigation