Skip to main content
Log in

Sources of CO2 evasion from two subtropical rivers in North America

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We directly measured the partial pressure of dissolved CO2 (pCO2) in two humid subtropical rivers in coastal Texas, one highly urbanized (Buffalo Bayou) and one relatively undeveloped (Spring Creek), and analyzed carbon isotopic signatures (Δ14C and δ 13C) of riverine dissolved inorganic carbon (DIC) to determine carbon sources sustaining river respiration. Both rivers were highly supersaturated with CO2 at all study sites and on all dates sampled from June 2007 to February 2009. Mean riverine pCO2 values are 3,052 ± 1,364 and 4,702 ± 1,980 μatm for Buffalo Bayou and Spring Creek, respectively. Calculated CO2 emission fluxes per ha of water surface area from these rivers are intermediate between those in tropical and temperate rivers, indicating that globally, humid subtropical rivers may be a significant source of atmospheric CO2. Carbon isotopic signatures revealed that CO2 supersaturation is supported by different carbon sources for the two rivers. In the relatively undeveloped river (Spring Creek), young terrestrial organic matter (OM) is the predominant C source fueling river heterotrophic respiration. In the highly urbanized river (Buffalo Bayou), the high concentration of riverine CO2 is additionally supported by dissolution of CaCO3 likely from pedogenic carbonate, and crushed limestone/dolomite and oyster shells imbedded in old roads in the watershed. Because urban sources of acidity can include HNO3 and H2SO4, whether the limestone/dolomite and shells used by humans act as a net sink or source of atmospheric CO2 needs further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aulenbach BT, Hooper RP, Bricker OP (1996) Trends in the chemistry of precipitation and surface water in a national network of small watersheds. Hydrol Process 10:151–181

    Article  Google Scholar 

  • Bricker OP, Rice KC (1993) Acid-rain. Annu Rev Earth Planet Sci 21:151–174

    Article  Google Scholar 

  • Broecker WS, Walton A (1959) Radiocarbon from nuclear tests. Science 130:309–314

    Article  Google Scholar 

  • Burchuladze AA, Chudy M, Eristavi IV, Pagava SV, Povinec P, Sivo A, Togonidze GI (1989) Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31:771–776

    Google Scholar 

  • Cai WJ, Wang Y (1998) The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol Oceanogr 43:657–668

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110

    Article  Google Scholar 

  • Cole JJ, Caraco NF, Peierls BL (1992) Can phytoplankton maintain a positive carbon balance in a turbid, fresh-water, tidal estuary. Limnol Oceanogr 37:1608–1617

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  Google Scholar 

  • Doran E (1965) Shell roads in Texas. Geogr Rev 55:223–240

    Article  Google Scholar 

  • Douglas R, Staines-Urias F (2007) Dimorphism, shell Mg/Ca ratios and stable isotope content in species of Bolivina (benthic foraminifera) in the Gulf of California, Mexico. J Foraminifer Res 37:189–203

    Article  Google Scholar 

  • Finlay JC (2003) Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry 62:231–252

    Article  Google Scholar 

  • Fisher WL (1982) Geologic Atlas of Texas, Houston Sheet. Bureau of Economic Geology. The University of Texas at Austin, Austin

    Google Scholar 

  • Gatz DF (1991) Urban precipitation chemistry—a review and synthesis. Atmos Environ B – Urban Atmos 25:1–15

    Article  Google Scholar 

  • Gentry DK, Sosdian S, Grossman EL, Rosenthal Y, Hicks D, Lear CH (2008) Stable isotope and Sr/Ca profiles from the marine gastropod Conus ermineus: testing a multiproxy approach for inferring paleotemperature and paleosalinity. Palaios 23:195–209

    Article  Google Scholar 

  • Hemond HF, Fechner-Levy EJ (2000) Chemical fate and transport in the environment. Academic Press, San Diego

    Google Scholar 

  • Herczeg AL, Broecker WS, Anderson RF, Schiff SL, Schindler DW (1985) A new method for monitoring temporal trends in the acidity of fresh waters. Nature 315:133–135

    Article  Google Scholar 

  • Ho DT, Bliven LF, Wanninkhof R, Schlosser P (1997) The effect of rain on air–water gas exchange. Tellus Ser B – Chem Phys Meteorol 49:149–158

    Article  Google Scholar 

  • Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Glob Change Biol 9:500–509

    Article  Google Scholar 

  • Hsueh DY, Krakauer NY, Randerson JT, Xu XM, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34:6

    Article  Google Scholar 

  • Jahne B, Heinz G, Dietrich W (1987) Measurement of the diffusion-coefficients of sparingly soluble gases in water. J Geophys Res – Oceans 92:10767–10776

    Article  Google Scholar 

  • Keller N, Del-Piero D, Longinelli A (2002) Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione from the Gulf of Trieste (Italy). Mar Biol 140:9–15

    Article  Google Scholar 

  • Kibler KW (1999) Radiocarbon dating of Rangia cuneata: correction factors and calibrations for the Galveston Bay area. Texas Archaeol Soc Pub 70:457–466

    Google Scholar 

  • Masiello CA, Druffel ERM (2001) Carbon isotope geochemistry of the Santa Clara River. Glob Biogeochem Cycle 15:407–416

    Article  Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541

    Article  Google Scholar 

  • McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299

    Article  Google Scholar 

  • McNichol AP, Jones GA, Hutton DL, Gagnon AR, Key RM (1994) The rapid preparation of seawater sigma-CO2 for radiocarbon analysis at the National Ocean Sciences AMS facility. Radiocarbon 36:237–246

    Google Scholar 

  • Melching CS, Flores HE (1999) Reaeration equations derived from US geological survey database. J Environ Eng – ASCE 125:407–414

    Article  Google Scholar 

  • Mook WG, Bommerso JC, Staverma WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon-dioxide. Earth Planet Sci Lett 22:169–176

    Article  Google Scholar 

  • NOAA (2009) National Weather Service, Southern Region Headquarters. http://www.srh.weather.gov. Cited 26 May 2009

  • Nordt LC, Hallmark CT, Wilding LP, Boutton TW (1998) Quantifying pedogenic carbonate accumulations using stable carbon isotopes. Geoderma 82:115–136

    Article  Google Scholar 

  • Nordt L, Orosz M, Driese S, Tubbs J (2006) Vertisol carbonate properties in relation to mean annual precipitation: implications for paleoprecipitation estimates. J Geol 114:501–510

    Article  Google Scholar 

  • Paquay FS, Mackenzie FT, Borges AV (2007) Carbon dioxide dynamics in rivers and coastal waters of the “Big Island” of Hawaii, USA, during baseline and heavy rain conditions. Aquat Geochem 13:1–18

    Article  Google Scholar 

  • Rasera M, Ballester MVR, Krusche AV, Salimon C, Montebelo LA, Alin SR, Victoria RL, Richey JE (2008) Small rivers in the southwestern Amazon and their role in CO2 outgassing. Earth Interact 12:16

    Google Scholar 

  • Raymond PA, Bauer JE (2001a) DOC cycling in a temperate estuary: a mass balance approach using natural C-14 and C-13 isotopes. Limnol Oceanogr 46:655–667

    Article  Google Scholar 

  • Raymond PA, Bauer JE (2001b) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409:497–500

    Article  Google Scholar 

  • Raymond PA, Bauer JE (2001c) Use of C-14 and C-13 natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org Geochem 32:469–485

    Article  Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317

    Article  Google Scholar 

  • Raymond PA, Caraco NF, Cole JJ (1997) Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20:381–390

    Article  Google Scholar 

  • Raymond PA, Bauer JE, Cole JJ (2000) Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol Oceanogr 45:1707–1717

    Article  Google Scholar 

  • Raymond PA, Bauer JE, Caraco NF, Cole JJ, Longworth B, Petsch ST (2004) Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Mar Chem 92:353–366

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  Google Scholar 

  • Rightmire CT (1967) A radiocarbon study of the age and origin of caliche deposits. M.A. Thesis, University of Texas, Austin

  • Selva EC, Couto EG, Johnson MS, Lehmann J (2007) Litterfall production and fluvial export in headwater catchments of the southern Amazon. J Trop Ecol 23:329–335

    Article  Google Scholar 

  • Shelby CA, McGowen MK, Aronow S, Fisher WL, Brown LF, McGowen JH, Groat CG, Barnes VE (1992) Geologic Atlas of Texas, Beaumont Sheet. In: Fisher WL (ed) Bureau of Economic Geology. The University of Texas at Austin, Austin

    Google Scholar 

  • Stauffer RE (1990) Electrode pH error, seasonal epilimnetic pCO2, and the recent acidification of the Maine lakes. Water Air Soil Pollut 50:123–148

    Article  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Titi H, Rasoulian M, Martinez M, Becnel B, Keel G (2003) Long-term performance of stone interlayer pavement. J Transp Eng – ASCE 129:118–126

    Article  Google Scholar 

  • Torgersen T, Branco B (2008) Carbon and oxygen fluxes from a small pond to the atmosphere: temporal variability and the CO2/O2 imbalance. Water Resour Res 44:14

    Article  Google Scholar 

  • Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411

    Article  Google Scholar 

  • Trumbore S, Da Costa ES, Nepstad DC, De Camargo PB, Martinelli L, Ray D, Restom T, Silver W (2006) Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Glob Change Biol 12:217–229

    Article  Google Scholar 

  • USDA (2009) http://websoilsurvey.nrcs.usda.gov. Cited 11 July 2009

  • USGS (2007) 2006 Minerals Yearbook (Stone, Crushed). U.S. Department of the Interior. U.S. Geological Survey, Washington, DC

    Google Scholar 

  • USGS (2009) 2007 Minerals Yearbook (Stone, Crushed) [Advance Release]. U.S. Department of the Interior. U.S. Geological Survey, Washington, DC

    Google Scholar 

  • Valastro S, Davis EM, Rightmir CT (1968) University of Texas at Austin Radiocarbon Dates 6. Radiocarbon 10:384–401

    Google Scholar 

  • Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res – Oceans 97:7373–7382

    Article  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108:145–154

    Article  Google Scholar 

  • Wisshak M, Correa ML, Gofas S, Salas C, Taviani M, Jakobsen J, Freiwald A (2009) Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp n. from the NE Atlantic. Deep-Sea Res – Oceangraphic Res Papers I 56:374–407

    Article  Google Scholar 

  • Yao GR, Gao QZ, Wang ZG, Huang XK, He T, Zhang YL, Jiao SL, Ding J (2007) Dynamics Of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci Total Environ 376:255–266

    Article  Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon-isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114

    Article  Google Scholar 

Download references

Acknowledgements

CAM and FWZ acknowledge the support of the Texas Water Resources Institute through a grant program supported by the U.S. Geological Survey and the National Institutes for Water Research. CAM and FWZ also acknowledge the generous support of Hans O. and Suse Jahns. FWZ is grateful to T.J. Perez, S.R. Alin and D. Lockwood for their assistance with instrument setup and sampling procedure, and Dr. Xinfeng Shi, Dr. Yanlu Ma, Dr. William Hockaday, Shuaiping Ge, Kaijian Liu, Yongbo Zhai, LaQuanti Calligan, Krystle Hodge, Li Zhang, Jianping Chen, Yan Chen, Jianping Huang, Xuan Guo, Yan Zhou, Qinglian Chen, Wei Chen, Baoshan Wang, Xinling Wang, and Lacey Pyle for their assistance in sample collection. An early draft of this paper benefited from Emilio Mayorga’s input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Wei Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, FW., Masiello, C.A. Sources of CO2 evasion from two subtropical rivers in North America. Biogeochemistry 100, 211–225 (2010). https://doi.org/10.1007/s10533-010-9417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9417-6

Keywords

Navigation