Skip to main content

Advertisement

Log in

White on green: under-snow microbial processes and trace gas fluxes through snow, Niwot Ridge, Colorado Front Range

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The importance of snow and related cryospheric processes as an ecological factor has been recognized since at least the beginning of the twentieth century. Even today, however, many observations remain anecdotal. The research to date on cold-lands ecosystems results in scientists being unable to evaluate to what extent changes in the cryosphere will be characterized by abrupt changes in local and global biogeochemical cycles, and how these changes in seasonality may affect the rates and timing of key ecological processes. Studies of gas exchanges through snow have revealed that snow plays an important role in modulating wintertime soil biogeochemical processes, and that these can be the driving processes for gas exchange at the snow surface. Previous research has primarily focused on carbon dioxide, and resulted from episodic experiments at a number of snow-covered sites. Here we report new insights from several field sites on Niwot Ridge in the Colorado Rocky Mountains, including a dedicated snow gas flux research facility established at the 3340 m Soddie site. A novel in situ experimental system was developed at this site to continuously sample trace gases from above and within the snowpack for the duration of seasonal snow cover. The suite of chemical species investigated includes carbon dioxide, nitrous oxide, nitrogen oxides, ozone, and volatile inorganic and organic gases. Wintertime measurements have been supplemented by soil chamber experiments and eddy covariance measurements to allow assessment of the contribution of wintertime fluxes to annual biogeochemical budgets. This research has resulted in a plethora of new insight into the physics of gas transport through the snowpack, and the magnitude and the chemical and biogeochemical processes that control fluxes at the soil-snowpack and the snow-atmosphere interface. This article provides an overview of the history and evolution of this research, and highlights the findings from the ten articles that constitute this special issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alstad KP, Lai C-T, Flanagan LB, Ehleringer JR (2007) Environmental controls on the carbon isotope composition of ecosystem-respired CO2 in contrasting forest ecosystems in Canada and the USA. Tree Physiol 27:1361–1374

    Google Scholar 

  • Blanken PD, Williams MW, Burns SP, Monson RK, Knowles J, Chowanski K, Ackerman T (2009) A comparison of water and carbon dioxide exchange at a windy alpine tundra and subalpine forest site near Niwot Ridge, Colorado. Biogeochemistry. doi:10.1007/s10533-009-9325-9

  • Bocquet F, Helmig D, Oltmans SJ (2007) Ozone in interstitial air of the mid-latitude, seasonal snowpack at Niwot Ridge, Colorado. Arct Antarct Alp Res 39:375–387

    Article  Google Scholar 

  • Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131:113–124. doi:10.1007/s00442-001-0851-y

    Article  Google Scholar 

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40. doi:10.1111/j.14698137.2007.02342.x

    Article  Google Scholar 

  • Bowling DR, Massman WJ, Schaeffer SM, Burns SP, Monson RK, Williams MW (2009) Biological and physical influences on the carbon isotope content of CO2 in a subalpine forest snowpack, Niwot Ridge, Colorado. Biogeochemistry. doi:10.1007/s10533-008-9233-4

    Google Scholar 

  • Bowman WD, Seastedt TR (2001) Structure and function of an alpine ecosystem: Niwot Ridge. Oxford University Press, Colorado, p 337

    Google Scholar 

  • Brooks PD, Williams MW (1999) Snowpack controls on N cycling and export in seasonally snow-covered catchments. Hydrol Process 13:2177–2190. doi:10.1002/(SICI)1099-1085(199910)13:14/15<2177::AID-HYP850>3.0.CO;2-V

    Article  Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113. doi:10.1007/BF00000354

    Article  Google Scholar 

  • Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra; environmental controls and relationship to inter-system C and N fluxes. Oecologia 110:403–413

    Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1998) Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry 43:1–15. doi:10.1023/A:1005947511910

    Article  Google Scholar 

  • Brooks PD, McKnight D, Elder K (2005) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Chang Biol 11:231–238. doi:10.1111/j.1365-2486.2004.00877.x

    Article  Google Scholar 

  • Burns SP, Delany AC, Sun J, Maclean G, Oncley SP, Semmer SR, Monson RK (2004) HYDRA: a programmable portable, trace-gas measuring system. AGU Fall Meeting, San Francisco 13–17 December

    Google Scholar 

  • Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005) Winter in northeastern North America: a critical period for ecological processes. Front Ecol Environ 3(6):314–322

    Article  Google Scholar 

  • Carrasco JF, Casassa G, Quimtana J (2005) Changes of the 0°C isotherm and the equilibrium line altitude in central chile during the last quarter of the twentieth century. Hydrol Sci J 50:933–948. doi:10.1623/hysj.2005.50.6.933

    Article  Google Scholar 

  • Chernov Y (1985) The living tundra. Cambridge University Press, Cambridge

    Google Scholar 

  • Comiso JC, Parkinson CL (2004) Satellite-observed changes in the Arctic. Phys Today 3:8–44. doi:10.1063/1.1801866 (August)

    Google Scholar 

  • Drobot S et al (2008) Arctic sea ice extent plummets in 2007. Eos Trans AGU 89:21–28. doi:10.1029/2008EO020001

    Article  Google Scholar 

  • Edwards AC, Scalenghe R, Freppaz M (2007) Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quat Int 162–163:172–181. doi:10.1016/j.quaint.2006.10.027

    Article  Google Scholar 

  • Filippa G, Freppaz M, Williams MW, Helmig D, Liptzin D, Seok B, Hall B & Chowanski K (2009) Winter and summer nitrous oxide and nitric oxide fluxes from a seasonally snow-covered subalpine meadow at Niwot Ridge, Colorado. Biogeochemistry. doi:10.1007/s10533-009-9304-1

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LR, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892. doi:10.1126/science.1136674

    Article  Google Scholar 

  • Grannas AM, Jones AE, Dibb J, Ammann M, Anastasio C, Beine HJ, Bergin M, Bottenheim J, Boxe CS, Carver G, Chen G, Crawford JH, Domine F, Frey MM, Guzman MI, Heard DE, Helmig D, Hoffmann MR, Honrath RE, Huey LG, Hutterli M, Jacobi HW, Klan P, Lefer B, McConnell J, Plane J, Sander R, Savarino J, Shepson PB, Simpson WR, Sodeau JR, von Glasow R, Weller R, Wolff EW, Zhu T (2007) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos Chem Phys 7:4329–4373

    Google Scholar 

  • Groffman PM et al (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56(2):135–150. doi:10.1023/A:1013039830323

    Article  Google Scholar 

  • Gu S, Tang YH, Cui XY, Du M, Zhao L, Li Y, Xu SX, Zhou H, Kato T, Qi PT, Zhao X (2008) Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. J Geophys Res—Atmos 113:D08118. doi:10.1029/2007JD009173

    Article  Google Scholar 

  • Helmig D, Johnson B, Oltmans SJ, Neff W, Eisele F, Davis DD (2008) Elevated ozone in the boundary layer at South Pole. Atmos Environ 42:2788–2803

    Article  Google Scholar 

  • Helmig D, Apel EC, Balke D, Ganzeveld L, Lefer B, Swanson AL (2009a) Release and uptake of volatile inorganic and organic gases through the deep, winter snowpack at Niwot Ridge, Colorado. Biogeochemistry. doi:10.1007/s10533-009-9326-8

  • Helmig D, Seok B, Williams MW, Hueber J, Sanford RJ (2009b) Fluxes and chemistry of nitrogen oxides in the Niwot Ridge, Colorado, snowpack. Biogeochemistry. doi:10.1007/s10533-009-9312-1

    Google Scholar 

  • Hemming D, Yakir D, Ambus P, Aurela M, Besson C, Black K, Buchmann N, Burlett R, Cescatti A, Clement R, Gross P, Granier A, Grunwald T, Havrankova K, Janous D, Janssens IA, Knohl A, Kostner B, Kowalski A, Laurila T, Mata C, Marcolla B, Matteucci G, Moncrieff J, Moors EJ, Osborne B, Pereira JS, Pihlatie M, Pilegaard K, Ponti F, Rosova Z, Rossi F, Scartazza A, Vesala T (2005) Pan-European δ13C values of air and organic matter from forest ecosystems. Glob Chang Biol 11:1065–1093

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS III, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD et al (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Change 72:251–298

    Article  Google Scholar 

  • Honrath RE, Peterson MC, Guo S, Dibb JE, Shepson PB, Campbell B (1999) Evidence of NOx production within or upon ice particles in the Greenland snowpack. Geophys Res Lett 26:695–698

    Article  Google Scholar 

  • Honrath RE, Peterson MC, Dziobak MP, Dibb JE, Arsenault MA, Green SA (2000) Release of NOx from sunlight-irradiated midlatitude snow. Geophys Res Lett 27:2237–2240

    Article  Google Scholar 

  • Hubbard RM, Ryan MG, Elder K, Rhodes CC (2005) Seasonal patterns in soil surface CO2 flux under snow cover in 50 and 300 year old subalpine forests. Biogeochemistry 73:93–107

    Article  Google Scholar 

  • Jones HG, Pomeroy JW, Davies TD, Tranter M, Marsh P (1999) CO2 in Arctic snow cover: landscape form, in-pack gas concentration gradients, and the implications for the estimation of gaseous fluxes. Hydrol Process 13:2977–2989

    Article  Google Scholar 

  • Jones AE, Weller R, Wolff EW, Jacobi HW (2000) Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys Res Lett 27:345–348

    Article  Google Scholar 

  • Jones AE, Weller R, Anderson PS, Jacobi HW, Wolff EW, Schrems O, Miller H (2001) Measurements of NOx emissions from the Antarctic snowpack. Geophys Res Lett 28:1499–1502

    Article  Google Scholar 

  • Knohl A, Werner RA, Brand WA, Buchmann N (2005) Short-term variations in δ13C of ecosystem respiration reveals link between assimilation and respiration in a deciduous forest. Oecologia 142:70–82

    Article  Google Scholar 

  • Kreft JU, Bonhoeffer S (2005) The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiol 151:637–641

    Article  Google Scholar 

  • Lai C-T, Ehleringer JR, Schauer AJ, Tans PP, Hollinger DY, Paw U KT, Munger JW, Wofsy SC (2005) Canopy-scale δ13C of photosynthetic and respiratory CO2 fluxes: observations in forest biomes across the United States. Glob Chang Biol 11:633–643

    Article  Google Scholar 

  • Larsen KS, Grogan P, Jonasson S, Michelsen A (2007) Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow depth. Arct Antarct Alp Res 39:268–276

    Article  Google Scholar 

  • Lepori F, Barbieri A, Ormerod SJ (2003) Causes of episodic acidification in alpine streams. Freshw Biol 48:175–189

    Article  Google Scholar 

  • Ley R, Williams MW, Schmidt S (2004) Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry 68(3):297–311

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–1631

    Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448

    Article  Google Scholar 

  • Lipson DA, Raab TK, Schmidt SK, Monson RK (2001) An empirical model of amino acid transformations in an alpine soil. Soil Biol Biochem 33:189–198

    Article  Google Scholar 

  • Lipson DA, Monson RK, Schmidt SK, Weintraub MN (2009) The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high-elevation coniferous forest. Biogeochemistry. doi: 10.1007/s10533-008-9252-1

  • Liptzin D, Helmig D, Williams MW, Seok B, Filippa G, Chowanski K, Hueber J (2009) Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry. doi:10.1007/s10533-009-9303-2

    Google Scholar 

  • Ludwig J, Meixner FX, Vogel B, Forstner J (2001) Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52:225–257

    Article  Google Scholar 

  • Maljanen M et al (2007) Fluxes and production of N2O, CO2 and CH4 in boreal agricultural soil during winter as affected by snow cover. Tellus B Chem Phys Meteorol 59(5):853–859

    Article  Google Scholar 

  • Marchand PJ (1996) Life in the cold: an introduction to winter ecology. University Press of New England, Hanover

    Google Scholar 

  • Marshall JD, Blair JM, Peters D, Okin G, Rango A, Williams MW (2008) Predicting and understanding ecosystem responses to climate change at continental scales. Front Ecol Environ 6(5):273–280. doi:10.1890/070165

    Article  Google Scholar 

  • Massman WJ (2006) Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. an analytical model. J Geophys Res—Biogeosci 111:14

    Google Scholar 

  • Massman WJ, Sommerfeld RA, Mosier AR, Zeller KF, Hehn TJ, Rochelle SG (1997) A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks. J Geophys Res—Atmos 102:18851–18863

    Article  Google Scholar 

  • McDowell NG, Bowling DR, Schauer A, Irvine J, Bond BJ, Law BE, Ehleringer JR (2004) Associations between carbon isotope ratios of ecosystem respiration, water availability and canopy conductance. Glob Chang Biol 10:1767–1784

    Article  Google Scholar 

  • Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Glob Chang Biol 8:459–478

    Article  Google Scholar 

  • Monson RK, Sparks JP, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 146:130–147

    Article  Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006a) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439(7077):711–714. doi:10.1038/nature04555

    Article  Google Scholar 

  • Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DL (2006b) The contribution of beneath snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochem Cycles 20(GB3030):1–13. doi:10.1029/2005GB00268,4

    Google Scholar 

  • Mortazavi B, Chanton JP, Prater JL, Oishi AC, Oren R, Katul G (2005) Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. Oecologia 142:57–69

    Article  Google Scholar 

  • Nobrega S, Grogan P (2007) Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10(3):419–431

    Article  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  Google Scholar 

  • Ponton S, Flanagan LB, Alstad KP, Johnson BG, Morgenstern K, Kljun N, Black TA, Barr AG (2006) Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glob Chang Biol 12:294–310

    Article  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  Google Scholar 

  • Schmidt SK, Lipson DA (2004) Microbial growth under the snow: implications for nutrient and alleochemical availability in temperate soils. Plant Soil 259:1–7

    Article  Google Scholar 

  • Schmidt SK, Wilson KL, Gebauer MM, Meyer AF, King AJ (2008a) Phylogeny and ecophysiology of opportunistic “snow molds” from a sub-alpine forest ecosystem. Microb Ecol. doi:10.1007/s00248-008-9387-6

    Google Scholar 

  • Schmidt SK, Wilson KL, Meyer AF, Porter TM, Schadt CW, Moncalvo JM (2008b) The missing fungi—new insights from culture-independent molecular studies of soil. In: Zengler K (ed) Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. American Society for Microbiology Press, Washington, pp 55–66

    Google Scholar 

  • Schmidt SK, Wilson KL, Monson RK, Lipson DA. (2009) Exponential growth of “snow molds” at sub-zero temperatures: an explanation for high beneath-snow respiration rates and Q10 values. Biogeochemistry doi:10.1007/s10533-008-9247-y

  • Seok B, Williams MW, Helmig D, Liptzin D, Chowanski K, Hueber J (2009) An automated system for continuous measurements of trace gas fluxes through snow: an evaluation of the gas diffusion method at a subalpine forest site, Niwot Ridge, Colorado. Biogeochemistry. doi:10.1007/s10533-009-9302-3

    Google Scholar 

  • Simpson WR, von Glasow R, Riedel K, Anderson P, Ariya P, Bottenheim J, Burrows J, Carpenter LJ, Friess U, Goodsite ME, Heard D, Hutterli M, Jacobi HW, Kaleschke L, Neff B, Plane J, Platt U, Richter A, Roscoe H, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7:4375–4418

    Article  Google Scholar 

  • Sommerfeld RA, Mosier AR, Musselmann RC (1993) CO2, CH4 and N2O flux through a Wyoming snowpack, and implications for global budgets. Nature 361:140–143

    Article  Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert arctic tundra to shrubland. Bioscience 55(1):17–26. doi:10.1641/00063568(2005)055[0017:WBPCHC]2.0.CO;2

    Article  Google Scholar 

  • Suzuki S, Ishizuka S, Kitamura K, Yamanoi K, Nakai Y (2006) Continuous estimation of winter carbon dioxide efflux from the snow surface in a deciduous broadleaf forest. J Geophys Res—Atmos 111:9

    Google Scholar 

  • Takagi K, Nomura M, Ashiya D, Takahashi H, Sasa K, Fujinuma Y, Shibata H, Akibayashi Y, Koike T (2005) Dynamic carbon dioxide exchange through snowpack by wind-driven mass transfer in a conifer-broadleaf mixed forest in northernmost Japan. Glob Biogeochem Cycle 19:10

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Chang Biol 12(4):686–702

    Article  Google Scholar 

  • Turnipseed AA, Blanken PD, Anderson DE, Monson RK (2002) Energy budget above a high-elevation subalpine forest in complex terrain. Agric For Meteorol 110:177–201

    Article  Google Scholar 

  • UNEP (2007) Global Outlook for Snow and Ice. United Nations Environment Programme p 235 ISBN No: 978-92-807-2799-9

  • Wickland KP, Striegl RG, Mast MA, Clow DW (2001) Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Global Biogeochem Cycles 15:321–335

    Article  Google Scholar 

  • Williams MW, Melack JM (1991a) Precipitation chemistry in and ionic loading to an alpine basin, Sierra Nevada. Water Resour Res 27:1563–1574

    Article  Google Scholar 

  • Williams MW, Melack JM (1991b) Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada. Water Resour Res 27:1563–1574

    Article  Google Scholar 

  • Williams MW, Tonnessen KA (2000) Critical loads for inorganic nitrogen deposition in the Colorado Front Range, USA. Ecol Appl 10(6):1648–1665

    Article  Google Scholar 

  • Williams MW, Brooks PD, Mosier A, Tonnessen KA (1996) Mineral nitrogen transformations in and under seasonal snow in a high-elevation catchment, Rocky Mountains, USA. Water Resour Res 32(10):3161–3175

    Article  Google Scholar 

  • Williams MW, Brooks PD, Seastedt T (1998) Nitrogen and carbon soil dynamics in response to climate change in a high-elevation ecosystem in the Rocky Mountains, USA. Arctic Alpine Res 30:26–30

    Article  Google Scholar 

  • Williams MW, Cline D, Hartmann M, Bardsley T (1999) Data for snowmelt model development, calibration, and verification at an alpine site, Colorado Front Range. Water Resour Res 35(10):3205–3209

    Article  Google Scholar 

  • Williams MW, Seibold C, Chowanski K (2009) Storage and release of solutes from a subalpine seasonal snowpack: Soil and stream water response, Niwot Ridge, Colorado. Biogeochemistry. doi:10.1007/s10533-009-9288-x

    Google Scholar 

  • Winston GC, Stephens BB, Sundquist ET, Hardy JP, and Davis RE (1995), Seasonal variability in CO2 transport through snow in a boreal forest biogeochemistry of snow-covered catchments. In: Tonnessen K, Williams MW, Tranter M (eds) IAHS Publ 228 pp 61–70

Download references

Acknowledgments

Primary support for this research came from a National Science Foundation grant to the Niwot Ridge Long-Term Ecological Research program (Award DEB-0423662). Logistical support was provided by the Institute of Arctic and Alpine’s Mountain Research Station. Construction of the Soddie underground laboratory was supported by the US Army Research Office. Snowpit sampling was conducted in large part by undergraduate interns in Snow Hydrology (Geography 3912) under direction of the Niwot Ridge LTER field staff. Many thanks to Matthew Sturm, who inspired our title “White on Green”, based on his research investigating climate, shrub, and snow interactions in the Arctic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M.W., Helmig, D. & Blanken, P. White on green: under-snow microbial processes and trace gas fluxes through snow, Niwot Ridge, Colorado Front Range. Biogeochemistry 95, 1–12 (2009). https://doi.org/10.1007/s10533-009-9330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9330-z

Keywords

Navigation