Skip to main content

Advertisement

Log in

The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochem Cycles 15:149–162. doi:10.1029/2000GB001278

    Article  Google Scholar 

  • Baldocchi D, Tang J, Xu L (2006) How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. J Geophys Res 111:G02008. doi:10.1029/2005JG000063

    Article  Google Scholar 

  • Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006) Long-term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochem 77:91–116. doi:10.1007/s10533-005-1062-0

    Article  Google Scholar 

  • Billings SA, Richter DD, Yarie J (1998) Soil carbon dioxide fluxes and profile concentrations in two boreal forests. Can J Res 28:1773–1783. doi:10.1139/cjfr-28-12-1773

    Article  Google Scholar 

  • Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For Ecol Manage 196:43–56. doi:10.1016/j.foreco.2004.03.011

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Butnor JR, Johnsen KH (2004) Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity. Eur J Soil Sci 55:639–647. doi:10.1111/j.1365-2389.2004.00642.x

    Article  Google Scholar 

  • Butnor JR, Johnsen KH, Oren R, Katul G (2003) Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-years-old loblolly pine stands. Glob Change Biol 9:849–861. doi:10.1046/j.1365-2486.2003.00630.x

    Article  Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New York

    Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252. doi:10.1038/30460

    Article  Google Scholar 

  • Chen D, Molina AE, Clapp CE, Venterea RT, Palazzo AJ (2005) Corn root influence on automated measurement of soil carbon dioxide concentrations. Soil Sci 170:779–787. doi:10.1097/01.ss.0000190512.41298.fc

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdel IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187. doi:10.1038/35041539

    Article  Google Scholar 

  • Daly E, Oishi AC, Porporato A, Katul GG (2008) A stochastic model for daily subsurface CO2 concentration and related soil respiration. Adv Water Resour 31:987–994. doi:10.1016/j.advwatres.2008.04.001

    Article  Google Scholar 

  • Davidson EA, Belk E, Boone R (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–227. doi:10.1046/j.1365-2486.1998.00128.x

    Article  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164. doi:10.1111/j.1365-2486.2005.01065.x

    Article  Google Scholar 

  • Fang C, Moncrieff JB (1999) A model for soil CO2 production and transport. 1: model development. Agric For Meteorol 95:225–236. doi:10.1016/S0168-1923(99)00036-2

    Article  Google Scholar 

  • Finzi AC, Schlesinger WH (2002) Species control variation on litter decomposition in a pine forest exposed to elevated CO2. Glob Change Biol 8:1217–1229. doi:10.1046/j.1365-2486.2002.00551.x

    Article  Google Scholar 

  • Finzi AC, Allen AS, DeLucia EH, Ellsworth DS, Schlesinger WH (2001) Forest litter production, chemistry, and decomposition following two years of free air CO2 enrichment. Ecology 82:470–484

    Google Scholar 

  • Flechard CR, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J (2007) Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agric For Meteorol 142:66–84. doi:10.1016/j.agrformet.2006.11.006

    Article  Google Scholar 

  • Freijer JI, Leffelaar PA (1996) Adapted Fick’s law applied to soil respiration. Water Resour Res 32:791–800. doi:10.1029/95WR03820

    Article  Google Scholar 

  • Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Jassal RS, Nesic Z (2006) Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agric For Meteorol 140:220–235. doi:10.1016/j.agrformet.2006.08.003

    Article  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861. doi:10.1038/35009076

    Article  Google Scholar 

  • Glinski J, Stepniewski W (1985) Soil aeration and its role for plants. CRC Press, Boca Raton

    Google Scholar 

  • Hashimoto S, Tanaka N, Kume T, Yoshifuji N, Hotta N, Tanaka K, Suzuki M (2007) Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest. J For Res 12:209–221. doi:10.1007/s10310-007-0009-9

    Article  Google Scholar 

  • Heath J, Ayres E, Possell M, Bardgett RD, Black HIJ, Grant H, Ineson P, Kerstiens G (2005) Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science 309:1711–1713. doi:10.1126/science.1110700

    Article  Google Scholar 

  • Hendrey G, Ellsworth D, Lewin K, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob Change Biol 5:293–309. doi:10.1046/j.1365-2486.1999.00228.x

    Article  Google Scholar 

  • Hirano T, Kim H, Tanaka Y (2003) Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. J Geophys Res 108(D20):4631. doi:10.1029/2003JD003766

    Article  Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin FSIII, Mooneyk HA, Field CB (1997) The fate of carbon in grassland under carbon dioxide enrichment. Nature 388:576–579. doi:10.1038/41550

    Article  Google Scholar 

  • Hyvonen R, Agren GI, Linder S et al (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480. doi:10.1111/j.1469-8137.2007.01967.x

    Article  Google Scholar 

  • Jassal RS, Black TA, Drewitt GB, Novak MD, Gaumont-Guay D, Nesic Z (2004) A model of the production and transport of CO2 in soil: predicting soil CO2 concentrations and CO2 efflux from a forest floor. Agric For Meteorol 124:219–236. doi:10.1016/j.agrformet.2004.01.013

    Article  Google Scholar 

  • Jassal R, Black A, Novack M, Morgenstern K, Nesic Z, Gaumont-Guay D (2005) Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agric For Meteorol 130:176–192. doi:10.1016/j.agrformet.2005.03.005

    Article  Google Scholar 

  • Juang J-Y, Porporato A, Stoy PC, Siqueira MBS, Oishi AC, Detto M, Kim HS, Katul GG (2007) Hydrologic and atmospheric controls on convective precipitation events in a southeastern US mosaic landscape. Water Resour Res W03421. doi:10.1029/2006WR004954

  • King JS, Hansonw PJ, Bernhardt E, Deangelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Glob Change Biol 10:1027–1042. doi:10.1111/j.1529-8817.2003.00789.x

    Article  Google Scholar 

  • Lee X, Wu H-J, Sigler J, Oishi C, Siccama T (2004) Rapid and transient response of soil respiration to rain. Glob Change Biol 10:1017–1026

    Article  Google Scholar 

  • Lichter J, Barron S, Finzi A, Irving K, Roberts M, Stemmler E, Schlesinger WH (2005) Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86:1835–1847. doi:10.1890/04-1205

    Article  Google Scholar 

  • Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J For Res 30:347–359. doi:10.1139/cjfr-30-3-347

    Article  Google Scholar 

  • Makipaa R (1995) Effect of nitrogen input on carbon accumulation of boreal forest soils and ground vegetation. For Ecol Manage 79:217–226. doi:10.1016/0378-1127(95)03601-6

    Article  Google Scholar 

  • Matamala R, Schlesinger WH (2000) Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Glob Change Biol 6:967–979. doi:10.1046/j.1365-2486.2000.00374.x

    Article  Google Scholar 

  • Millington RJ (1959) Gas diffusion in porous media. Science 130:100–102. doi:10.1126/science.130.3367.100-a

    Article  Google Scholar 

  • Millington RJ, Quirk JM (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207. doi:10.1039/tf9615701200

    Article  Google Scholar 

  • Oh NH, Richter DD (2005) Elemental translocation and loss from three highly weathered soil–bedrock profiles in the southeastern United States. Geoderma 126:5–25. doi:10.1016/j.geoderma.2004.11.005

    Article  Google Scholar 

  • Olsson P, Linder S, Giesler R, Hogberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterothropic soil respiration. Glob Change Biol 11:1745–1753. doi:10.1111/j.1365-2486.2005.001033.x

    Article  Google Scholar 

  • Oren R, Pataki DE (2001) Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 127:549–559. doi:10.1007/s004420000622

    Article  Google Scholar 

  • Oren R, Ewers BE, Todd P, Phillips N, Katul G (1998) Water balance delineates the soil layer in which moisture affects canopy conductance. Ecol Appl 8:990–1002. doi:10.1890/1051-0761(1998)008[0990:WBDTSL]2.0.CO;2

    Article  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472. doi:10.1038/35078064

    Article  Google Scholar 

  • Oren R, Hsieh C-I, Stoy P, Albertson J, McCarthy HR, Harrell P, Katul GG (2006) Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Glob Change Biol 12:883–896. doi:10.1111/j.1365-2486.2006.01131.x

    Article  Google Scholar 

  • Palmroth S, Maier CA, McCarthy HR, Oishi AC, Kim H-S, Johnsen KH, Katul GG, Oren R (2005) Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest. Glob Change Biol 11:1–14. doi:10.1111/j.1365-2486.2005.00915.x

    Article  Google Scholar 

  • Palmroth S, Oren R, McCarthy HR, Johnsen KH, Finzi AC, Butnor JR, Ryan MG, Schlesinger WH (2006) Aboveground sink strength in forests controls the allocation of carbon below ground and its CO2-induced enhancement. Proc Natl Acad Sci USA 103:19362–19367. doi:10.1073/pnas.0609492103

    Article  Google Scholar 

  • Patwardhan AS, Nieber JL, Moore ID (1988) Oxygen, carbon dioxide, and water transfer in soils: mechanisms and crop response. Trans Am Soc Agr Eng 31:1383–1395

    Google Scholar 

  • Phillips RP, Fahey TJ (2007) Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol 176:655–664. doi:10.1111/j.1469-8137.2007.02204.x

    Article  Google Scholar 

  • Phillips N, Oren R (2001) Intra- and inter-annual variation in transpiration of a pine forest. Ecol Appl 11:385–396. doi:10.1890/1051-0761(2001)011[0385:IAIAVI]2.0.CO;2

    Article  Google Scholar 

  • Pumpanen J, Ilvesniemi H, Hari P (2003) A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci Soc Am J 67:402–413

    Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Google Scholar 

  • Rustad LE, Fernandez IJ (1998) Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA. Glob Change Biol 4:597–605. doi:10.1046/j.1365-2486.1998.00169.x

    Article  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. doi:10.1021/ac60214a047

    Article  Google Scholar 

  • Schäfer KV, Oren R, Lai CT, Katul GG (2002) Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Glob Change Biol 8:895–911

    Article  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1:77–91. doi:10.1111/j.1365-2486.1995.tb00008.x

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academy Press, San Diego

    Google Scholar 

  • Simunek J, Suarez DL (1993) Modeling of carbon dioxide transport and production in soil. I. Model development. Water Resour Res 29:487–497. doi:10.1029/92WR02225

    Article  Google Scholar 

  • Steel GD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Suwa M, Katul GG, Oren R, Andrews J, Pippen J, Mace A, Schlesinger WH (2004) Impact of elevated atmospheric CO2 on forest floor respiration in a temperate pine forest. Global Biogeochem Cycles 18:GB2013. doi:10.129/2003GB002182

    Article  Google Scholar 

  • Takle ES, Massman WJ, Brandle JR et al (2004) Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agric For Meteorol 124:193–206. doi:10.1016/j.agrformet.2004.01.014

    Article  Google Scholar 

  • Taneva L, Pippen JS, Schlesinger WH, Gonzalez-Meler MA (2006) The turnover of carbon pools contributing to soil CO2 and soil respiration in a temperate forest exposed to elevated CO2 concentration. Glob Change Biol 12:983–994. doi:10.1111/j.1365-2486.2006.01147.x

    Article  Google Scholar 

  • Tang J, Baldocchi DD, Qi Y, Xu L (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 124:193–206

    Google Scholar 

  • Thorbjørn A, Moldrup P, Blendstrup H, Komatsu T, Rolston DE (2008) A gas diffusivity model based on air-, solid-, and water-phase resistance in variably saturated soil. Vadose Zone J 7:1276–1286. doi:10.2136/vzj2008.0023

    Article  Google Scholar 

  • Thorstenson DC, Pollock DW (1989) Gas transport in unsaturated zones: multicomponent systems and the adequacy of Fick’s laws. Water Resour Res 25:477–507. doi:10.1029/WR025i003p00477

    Article  Google Scholar 

  • Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396. doi:10.1126/science.272.5260.393

    Article  Google Scholar 

  • Winston GC, Sundquist ET, Stephens BB, Trumbore SE (1997) Winter CO2 fluxes in a boreal forest. J Geophys Res 102(D24):28795–28804. doi:10.1029/97JD01115

    Article  Google Scholar 

  • Xu L, Baldocchi DD, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochem Cycles 18:GB4002. doi:10.1029/2004GB002281

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222. doi:10.1046/j.1469-8137.2000.00687.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Judd Edeburn and the Duke Forest staff, and Keith Lewin and the Brookhaven National Laboratories staff, in particular Robert Nettles, for their assistance at the Duke Forest FACE site. E. D. thanks Luca Grossini for his help with some of the analyses. The authors also thank T. Christensen and an anonymous reviewer for their suggestions. This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant no. DE-FG02-95ER62083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Daly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daly, E., Palmroth, S., Stoy, P. et al. The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest. Biogeochemistry 94, 271–287 (2009). https://doi.org/10.1007/s10533-009-9327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9327-7

Keywords

Navigation