Skip to main content
Log in

Variability in soil respiration across riparian-hillslope transitions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as outstanding gaps in our understanding of carbon cycling. We investigated both across two riparian-hillslope transitions in a subalpine catchment, northern Rocky Mountains, Montana. Riparian-hillslope transitions provide ideal locations for investigating the controls on soil CO2 dynamics due to strong, natural gradients in the factors driving respiration, including soil water content (SWC) and soil temperature. We measured soil air CO2 concentrations (20 and 50 cm), surface CO2 efflux, soil temperature, and SWC at eight locations. We investigated (1) how soil CO2 concentrations differed within and between landscape positions; (2) how the timing of peak soil CO2 concentrations varied across riparian and hillslope zones; and (3) whether higher soil CO2 concentrations necessarily resulted in higher efflux (i.e. did surface CO2 efflux follow patterns of subsurface CO2)? Soil CO2 concentrations were significantly higher in the riparian zones, likely due to higher SWC. The timing of peak soil CO2 concentrations also differed between riparian and hillslope zones, with highest hillslope concentrations near peak snowmelt and highest riparian concentrations during the late summer and early fall. Surface CO2 efflux was relatively homogeneous at monthly timescales as a result of different combinations of soil CO2 production and transport, which led to equifinality in efflux across the transects. However, efflux was 57% higher in the riparian zones when integrated to cumulative growing season efflux, and suggests higher riparian soil CO2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochem Cycles 15:149–162. doi:10.1029/2000GB001278

    Article  Google Scholar 

  • Baldocchi D, Tang J, Xu L (2006) How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. J Geophys Res 111:G02008. doi:10.1029/2005JG000063

  • Beven KJ, Kirkby MJ (1979) A physically-based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Brooks PD, McKnight D, Elder K (2005) Carbon limitations of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Change Biol 11:231–238. doi:10.1111/j.1365-2486.2004.00877.x

    Article  Google Scholar 

  • Buchmann N, Guehl JM, Barigah TS, Ehleringer JR (1997) Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120–131. doi:10.1007/s004420050140

    Article  Google Scholar 

  • Buchmann N, Hinckley TM, Ehleringer JR (1998) Carbon isotope dynamics in Abies amabilis stands in the Cascades. Can J For Res 28:808–819. doi:10.1139/cjfr-28-6-808

    Article  Google Scholar 

  • Clark MD, Gilmour JT (1983) The effect of temperature on decomposition at optimum and saturated soil water contents. Soil Sci Soc Am J 47:927–929

    Google Scholar 

  • Conant RT, Klopatek JM, Malin RC, Klopatek CC (1998) Carbon pools and fluxes along an environmental gradient in northern Arizona. Biogeochemistry 43:43–61. doi:10.1023/A:1006004110637

    Article  Google Scholar 

  • Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM (2004) Controls on soil respiration in semiarid soils. Soil Biol Biogeochem 36:945–951. doi:10.1016/j.soilbio.2004.02.013

    Article  Google Scholar 

  • Davidson EA, Trumbore SE (1995) Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus 47B:550–565

    Google Scholar 

  • Davidson EA, Verchot LV, Cattanio JH et al (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69. doi:10.1023/A:1006204113917

    Article  Google Scholar 

  • Fang C, Moncrieff JB, Gholz HL, Clark KL (1998) Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil 205:135–146. doi:10.1023/A:1004304309827

    Article  Google Scholar 

  • Farnes PE, Shearer RC, McCaughey WW, Hanson KJ (1995) Comparisons of hydrology, geology and physical characteristics between Tenderfoot Creek experimental forest (East Side) Montana, and Coram experimental Forest (West Side) Montana. Final Report RJVA-INT-92734.USDA Forest Service, Intermountain Research Station, Forestry Sciences Laboratory, Bozeman

  • Grayson R, Western A (2001) Terrain and the distribution of soil moisture. Hydrol Process 15:2689–2690. doi:10.1002/hyp.479

    Article  Google Scholar 

  • Hamada Y, Tanaka T (2001) Dynamics of carbon dioxide in soil profiles based on long-term field observation. Hydrol Process 15:1829–1845. doi:10.1002/hyp.242

    Article  Google Scholar 

  • Happell JD, Chanton JP (1993) Carbon remineralization in a north Florida swamp forest: effects of water level on the pathways and rates of soil organic matter decomposition. Global Biogeochem Cycles 7:475–490. doi:10.1029/93GB00876

    Article  Google Scholar 

  • Hillel D (2004) Introduction to environmental soil physics. Elsevier Academic Press, San Diego

    Google Scholar 

  • Hirano T (2005) Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a temperate deciduous forest. Global Biogeochem Cycles 19:GB2011. doi:10.1029/2004GB002259

  • Holdorf HD (1981) Soil Resource Inventory, Lewis and Clark National Forest–Interim In-Service Report. On file with the Lewis and Clark National Forest. Forest Supervisor’s Office, Great Falls

    Google Scholar 

  • Kang S, Doh S, Dongsun Lee et al (2003) Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob Change Biol 9:1427–1437. doi:10.1046/j.1365-2486.2003.00668.x

    Article  Google Scholar 

  • Kang S, Lee D, Kimball J (2004) The effects of spatial aggregation of complex topography on hydro-ecological process simulations within a rugged forest landscape: development and application of a satellite-based topoclimatic model. Can J For Res 34:519–530. doi:10.1139/x03-213

    Article  Google Scholar 

  • Kang S, Lee D, Lee J, Running S (2006) Topographic and climatic controls on soil environments and net primary production in a rugged temperate hardwood forest in Korea. Ecol Res 21:64–74. doi:10.1007/s11284-005-0095-0

    Article  Google Scholar 

  • Kelliher FM, Ross DJ, Law BE et al (2004) Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests. For Ecol Manag 191:201–213. doi:10.1016/j.foreco.2003.12.005

    Article  Google Scholar 

  • McCarthy KA, Johnson RL (1995) Measurement of trichloroethylene diffusion as a function of moisture content in sections of gravity-drained soil columns. J Environ Qual 24:49–55

    Article  Google Scholar 

  • McDowell NG, Marshall JD, Hooker TD, Musselman R (2000) Estimating CO2 fluxes from snowpacks at three sites in the Rocky Mountains. Tree Physiol 20:745–753

    Google Scholar 

  • McGlynn BL, Seibert J (2003) Distributed assessment of contributing area and riparian buffering along stream networks. Water Resour Res 39. doi:10.1029/2002WR001521

  • McGlynn BL, McDonnell JJ, Bramer DD (2002) A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments, New Zealand. J Hydrol (Amst) 257:1–26. doi:10.1016/S0022-1694(01)00559-5

    Article  Google Scholar 

  • McLain J, Martens D (2006) Moisture controls on trace gas fluxes in semiarid riparian soils. Soil Sci Soc Am J 70:367–377. doi:10.2136/sssaj2005.0105

    Article  Google Scholar 

  • Millington RJ (1959) Gas diffusion in porous media. Science 130:100–102. doi:10.1126/science.130.3367.100-a

    Article  Google Scholar 

  • Mincemoyer SA, Birdsall JL (2006) Vascular flora of the Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana. Madrono 53:211–222. doi:10.3120/0024-9637(2006)53[211:VFOTTC]2.0.CO;2

    Article  Google Scholar 

  • Moldrup P, Olsen T, Schjønning P, Yamaguchi T, Rolston DE (2000) Predicting the gas diffusion coefficient in undisturbed soil from soil water characteristics. Soil Sci Soc Am J 64:94–100

    Google Scholar 

  • Moldrup P, Olsen T, Komatsu T, Schjønning P, Rolston DE (2001) Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65:613–623

    Google Scholar 

  • Moldrup P, Olsen T, Yoshikawa S, Komatsu T, Rolston DE (2004) Three-porosity model for predicting the gas diffusion coefficient in undisturbed soil. Soil Sci Soc Am J 68:750–759

    Google Scholar 

  • Monson RK, Burns SP, Williams MW et al (2006) The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochem Cycles 20:GB3030. doi:10.1029/2005GB002684

  • Musselman RC, Massman WJ, Frank JM, Korfmacher JL (2005) The temporal dynamics of carbon dioxide under snow in a high elevation Rocky Mountain subalpine forest and meadow. Arct Antarct Alp Res 37:527–538. doi:10.1657/1523-0430(2005)037[0527:TTDOCD]2.0.CO;2

    Article  Google Scholar 

  • Norton SA, Cosby BJ, Hernandez IJ et al (2001) Long-term and seasonal variations in CO2: Linkages to catchment alkalinity generation. Hydrol Earth Sci Syst 5:83–91

    Google Scholar 

  • Oades JM (1988) The retention of organic-matter in soils. Biogeochemistry 5:35–70. doi:10.1007/BF02180317

    Article  Google Scholar 

  • Orchard VA, Cook FJ (1983) Relationship between soil respiration and soil-moisture. Soil Biol Biochem 15:447–453. doi:10.1016/0038-0717(83)90010-X

    Article  Google Scholar 

  • Pendall E, Bridgham S, Hanson P et al (2004) Below-ground process response to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322. doi:10.1111/j.1469-8137.2004.01053.x

    Article  Google Scholar 

  • Pennock DJ, Zebarth BJ, De Jong E (1987) Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma 40:297–315. doi:10.1016/0016-7061(87)90040-1

    Article  Google Scholar 

  • Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9:23–36. doi:10.1029/94GB02723

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Google Scholar 

  • Raich JW, Potter CS, Bhagawati D (2002) Interannual variability in global soil respiration, 1980–94. Glob Change Biol 8:800–812. doi:10.1046/j.1365-2486.2002.00511.x

    Article  Google Scholar 

  • Risk D, Kellman L, Beltrami H (2002a) Carbon dioxide in soil profiles: production and temperature dependence. Geophys Res Lett 29:11-1–11-4

    Article  Google Scholar 

  • Risk D, Kellman L, Beltrami H (2002b) Soil CO2 production and surface flux at four climate observatories in eastern Canada. Global Biogeochem Cycles 16. doi:10.1029/2001GB001831

  • Riveros-Iregui DA, Emanuel RE, Muth DJ et al (2007) Diurnal hysteresis between soil temperature and soil CO2 is controlled by soil water content. Geophys Res Lett 34:L17404. doi:10.1029/2007GL030938,2007

  • Riveros-Iregui DA, McGlynn BL, Epstein HE, Welsch DL (in press) Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probes. J Geophys Res Biogeosci. doi:10.1029/2008JG000811

  • Robinson DA, Jones SB, Wraith JM et al (2003) A review of advances in dielectric and electrical conductivity measurements in soils using time domain reflectometry. Vadose Zone J 2:444–475

    Article  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361. doi:10.1126/science.1086940

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego

  • Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biol Biochem 35:525–534. doi:10.1016/S0038-0717(03)00007-5

    Article  Google Scholar 

  • Sjogersten S, van der Wal R, Woodin SJ (2006) Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic. Biogeochemistry 80:205–216. doi:10.1007/s10533-006-9018-6

    Article  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54:1619–1625

    Google Scholar 

  • Sommerfeld RA, Massman WJ, Musselman RC (1996) Diffusional flux of CO2 through snow: Spatial and temporal variability among alpine-subalpine sites. Global Biogeochem Cycles 10:473–482. doi:10.1029/96GB01610

    Article  Google Scholar 

  • Tang J, Baldocchi DD, Qi Y, Xu L (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 118:207–220. doi:10.1016/S0168-1923(03)00112-6

    Article  Google Scholar 

  • Washington JW, Rose AW, Ciolkosz EJ, Dobos RR (1994) Gaseous diffusion and permeability in four soil profiles in central Pennsylvania. Soil Sci 157:65–76. doi:10.1097/00010694-199402000-00001

    Article  Google Scholar 

  • Welles JM, Demetriades-Shah TH, McDermitt DK (2001) Considerations for measuring ground CO2 effluxes with chambers. Chem Geol 177:3–13. doi:10.1016/S0009-2541(00)00388-0

    Article  Google Scholar 

  • Welsch DL, Hornberger GM (2004) Spatial and temporal simulation of soil CO2 concentrations in a small forested catchment in Virginia. Biogeochemistry 71:415–436. doi:10.1023/B:BIOG.0000049350.24911.e9

    Article  Google Scholar 

  • Wilson DJ, Western AW, Grayson RB (2005) A terrain and data-based method for generating the spatial distribution of soil moisture. Adv Water Resour 28:43–54. doi:10.1016/j.advwatres.2004.09.007

    Article  Google Scholar 

  • Woods SW, Ahl R, Sappington J, McCaughey WW (2006) Snow accumulation in thinned lodgepole pine stands, Montana, USA. For Ecol Manag 235:202–211. doi:10.1016/j.foreco.2006.08.013

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Tenderfoot Creek Experimental Forest and the USDA, Forest Service, Rocky Mountain Research Station, especially Ward McCaughey for research access and logistical support, field assistance from Kelsey Jencso, Becca McNamara, Kelley Conde, and Austin Allen, assistance with statistical analysis from Dr. Lucy Marshall, and colleague reviews from Dr. Catherine Zabinski and Dr. Mark Skidmore. This work was funded by the NSF Integrated Carbon Cycle Research Program (ICCR, NSF grants EAR0404130, EAR0403924, and EAR0403906) and fellowships awarded to V.J. Pacific by the Inland Northwest Research Alliance (INRA), Montana Water Center Student Research Grant Program, and the Big Sky Institute NSF GK-12 program. We are also thankful for comments by two anonymous reviewers and Biogeochemistry Associate Editor Jan Mulder, the incorporation of which have significantly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian L. McGlynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacific, V.J., McGlynn, B.L., Riveros-Iregui, D.A. et al. Variability in soil respiration across riparian-hillslope transitions. Biogeochemistry 91, 51–70 (2008). https://doi.org/10.1007/s10533-008-9258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9258-8

Keywords

Navigation