Skip to main content
Log in

Quantification and characterization of dissolved organic carbon and iron in sedimentary porewater from Green Bay, WI, USA

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Both dissolved organic carbon (DOC) and iron play an important role in biogeochemical processes in lacustrine benthic environments. Moreover, recent evidence has shown that both substances can act as active reductants in the redox transformation of organic pollutants. This paper examines the nature and abundance of DOC and dissolved ferrous iron (FeII) in porewaters from a sediment core collected in Green Bay, WI, USA. The concentration of dissolved FeII and the abundance, absorbance at 280 nm (A 280 nm), molar absorptivities (ε280 nm), molecular weights, and polydispersities of DOC were measured as a function of depth in porewaters. Dissolved FeII concentrations increased from 3.6 μM near the sediment–water interface to 163 μM at a depth of 11 cm, then gradually declined. The DOC distribution varied with sediment depth, with the greatest variation in porewater DOC content and properties occurring in the transitional zone between oxic and suboxic conditions. The down-core porewater DOC profile was characterized by an increase in DOC concentration with depth from 0.64 mM OC at 1 cm to 1.23 mM OC at 13 cm, below which it remained relatively constant. A strong correlation was observed between FeII and DOC concentrations, suggesting that these constituents co-accumulate in these porewaters. The correlation between the DOC concentration of the porewaters and A 280 nm was significant, making this parameter a good predictor for DOC concentrations in these waters. The molecular weight distributions of the porewater DOC were primarily monomodal, with relatively low polydispersivities. Weight-average molecular weights ranged from 1505 to 1949 Da. This data set is unique in that it is the first detailed study of a relatively highly resolved DOC profile of benthic porewater in surficial sediment from the Laurentian Great Lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alperin M. J., Albert D. B. and Martens C. S. 1994. Seasonal variations in production and con-sumption rates of dissolved organic carbon in an organic-rich sediment. Geochim. Cosmochim. Acta 58: 4909–4930.

    Google Scholar 

  • Alperin M. J., Martens C. S., Albert D. B., Suayah I. B., Benninger L. K., Blair N. E. and Jahnke R. A. 1999. Benthic fluxes and porewater concentration pro les of dissolved organic carbon in sediments from the North Carolina continental slope. Geochim. Cosmochim. Acta 63: 427–448.

    Google Scholar 

  • Amirbahman A., Reid A. L., Haines T. A., Kahl J. S. and Arnold C. 2002. Association of methyl-mercury with dissolved humic acids. Environ. Sci. Technol. 36: 690–695.

    Google Scholar 

  • Braun D. W., Floyd A. J. and Sainsbury M. 1988. Organic Spectroscopy. John Wiley, New York.

    Google Scholar 

  • Brownawell B. J. and Farrington J. N. 1986. Biogeochemistry of PCBs in interstitial waters of coastal marine sediments. Geochim. Cosmochim. Acta 50: 157–169.

    Google Scholar 

  • Burdige D. J. 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Sci. Rev. 35: 249–284.

    Google Scholar 

  • Burdige D. J. 2001. Dissolved organic matter in Chesapeake Bay sediment pore waters. Org. Geochem. 32: 487–505.

    Google Scholar 

  • Burdige D. J. 2002. Sediment pore waters. In: Hansell D. A. and Carlson C. A. (eds), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, London, pp. 611–663.

    Google Scholar 

  • Burdige D. J. and Gardner K. G. 1998. Molecular weight distribution of dissolved organic carbon in marine sediment pore waters. Mar. Chem. 62: 45–64.

    Google Scholar 

  • Burdige D. J., Berelson W. M., Coale K. H., McManus J. and Johnson K. 1999. Fluxes of dissolved organic carbon from California continental margin sediments. Geochim. Cosmochim. Acta 63: 1507–1515.

    Google Scholar 

  • Cabanis S. E. 1992. Synchronous fluorescence spectra of metal-fulvic acid complexes. Environ. Sci. Technol. 26: 1133–1139.

    Google Scholar 

  • Capel P. D. and Eisenreich S. J. 1990. Relationship between chlorinated hydrocarbons and organic carbon in sediment and porewater. J. Great Lakes Res. 16: 245–257.

    Google Scholar 

  • Cervantes F. J., de Bok F. A. M., Duong-Dac T., Stams A. J. M., Lettinga G. and Field J. A. 2002. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ. Microbiol. 4: 51–57.

    Google Scholar 

  • Chen R. F., Bada J. L. and Suzuki Y. 1993. The relationship between dissolved organic carbon (DOC)and fluorescence in anoxic marine porewaters: Implications for estimating benthic DOC fluxes. Geochim. Cosmochim. Acta 57: 2149–2153.

    Google Scholar 

  • Chin Y.-P. and Gschwend P. M. 1991. The abundance, distribution, and con guration of porewater organic colloids in recent sediments. Geochim. Cosmochim. Acta 55: 1309–1317.

    Google Scholar 

  • Chin Y.-P. and Gschwend P. M. 1992. Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. Environ. Sci. Technol. 26: 1621–1626.

    Google Scholar 

  • Chin Y.-P., McNichol A. P. and Gschwend P. M. 1991. Quanti cation and characterization of pore-water organic colloids. In: Baker R. A. (ed), Organic Substances in Sediments and Water: Processes and Analytical. Lewis Publishers, Inc., Chelsea, MI, pp. 107–126.

    Google Scholar 

  • Chin Y.-P., Aiken G. and O'Loughlin E. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 28: 1853–1858.

    Google Scholar 

  • Chin Y.-P., Aiken G. R. and Danielsen K. M. 1997. Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ. Sci. Technol. 31: 1630–1635.

    Google Scholar 

  • Chin Y.-P., Traina S. J. and Swank C. R. 1998. Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland. Limnol. Oceanogr. 43: 1287–1296.

    Google Scholar 

  • Chiou C. T., Malcolm R. L., Brinton T. I. and Kile D. E. 1986. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 20: 502–508.

    Google Scholar 

  • Coates J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E. and Lovley D. R. 1998. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64: 1504–1509.

    Google Scholar 

  • Coates J. D., Cole K. A., Chakraborty R., O'Connor S. M. and Achenbach L. A. 2002. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl. Environ. Microbiol. 68: 2445–2452.

    Google Scholar 

  • Curtis G. P. 1991. Reductive Dehalogenation of Hexachloroethane and Carbon Tetrachloride by Aquifer Sand and Humic Acid. PhD Dissertation, Stanford University, Palo Alto, CA.

    Google Scholar 

  • De Haan H. and De Boer T. 1987. Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer. Water Res. 21: 731–734.

    Google Scholar 

  • Dunnivant F. M., Schwarzenbach R. P. and Macalady D. L. 1992. Reduction of substituted nitro-benzenes in aqueous solutions containing natural organic matter. Environ. Sci. Technol. 26: 2133–2141.

    Google Scholar 

  • Forbes T. L., Forbes V. E., Giessing A., Hansen R. and Kure L. K. 1998. Relative role of pore water versus ingested sediment in bioavailability of organic contaminants in marine sediments. Environ. Toxicol. Chem. 17: 2453–2462.

    Google Scholar 

  • Fredrickson J. K., Kostandarithes H. M., Li S. W., Plymale A. E. and Daly M. J. 2000. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII)by Deinococcus radiodurans R1. Appl. Environ. Microbiol. 66: 2006–2011.

    Google Scholar 

  • Harkey G. A., Landrum P. F. and Klaine S. J. 1994. Comparison of whole-sediment, elutriate and pore-water exposures for use in assessing sediment-associated organic contaminants in bioassays. Environ. Toxicol. Chem. 13: 1315–1329.

    Google Scholar 

  • Harvey G. R., Boran D. A., Chesal L. A. and Tokar J. M. 1983. The structure of marine fulvic and humic acids. Mar. Chem. 12: 119–132.

    Google Scholar 

  • Hedges J. I. and Keil R. G. 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem. 49: 81–115.

    Google Scholar 

  • Her N., Amy G., Foss D. and Cho J. 2002. Variations of molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection. Environ. Sci. Technol. 36: 3393–3399.

    Google Scholar 

  • Hutchinson N. J. and Sprague J. B. 1987. Reduced lethality of Al, Zn and Cu mixtures to American. ag sh by complexation with humic substances in acidi ed soft waters. Environ. Toxicol. Chem. 6: 755–765.

    Google Scholar 

  • Jahnke R. A. 1988. A simple, reliable, and inexpensive pore-water sampler. Limnol. Oceanogr. 33: 483–487.

    Google Scholar 

  • Kappler A. and Haderlein S. B. 2003. Natural organic matter as reductant for chlorinated aliphatic pollutants. Environ. Sci. Technol. 37: 2714–2719.

    Google Scholar 

  • Krom M. D. and Sholkovitz E. R. 1977. Nature and reactions of dissolved organic matter in the interstitial waters of marine sediments. Geochim. Cosmochim. Acta 41: 1565–1573.

    Google Scholar 

  • Krom M. D., Mortimer R. J. G., Poulton S. W., Hayes P., Davies I. M., Davison W. and Zhang H. 2002. In-situ determination of dissolved iron production in recent marine sediments. Aquat. Sci. 64: 282–291.

    Google Scholar 

  • Landrum P. F., Reinhold M. D., Nihart S. R. and Eadie B. J. 1985. Predicting the bioavailability of organic xenobiotics to Pontoporeia hoyi in the presence of humic and fulvic materials and natural dissolved organic matter. Environ. Toxicol. Chem. 4: 459–467.

    Google Scholar 

  • Lovley D. R., Fraga J. L., Blunt-Harris E. L., Hayes L. A., Phillips E. J. P. and Coates J. D. 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26: 152–157.

    Google Scholar 

  • Lovley D. R., Fraga J. L., Coates J. D. and Blunt-Harris E. L. 1999. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1: 89–98.

    Google Scholar 

  • Luther G. W. III., Shellenbarger P. A. and Brendel P. J. 1996. Dissolved organic Fe(III)and Fe(II) complexes in salt marsh porewaters. Geochim. Cosmochim. Acta 60: 951–960.

    Google Scholar 

  • Ma H., O'Loughlin E. J. and Burris D. R. 2001. Factors affecting humic-nickel complex mediated reduction of trichloroethene in homogeneous aqueous solution. Environ. Sci. Technol. 35: 717–724.

    Google Scholar 

  • Mitra S. and Dickhut R. M. 1999. Three-phase modeling of polycyclic aromatic hydrocarbon association with pore-water-dissolved organic carbon. Environ. Toxicol. Chem. 18: 1144–1148.

    Google Scholar 

  • O'Loughlin E. J. and Burris D. R. 2000. Reductive dehalogenation of trichloroethene mediated by wetland DOC-transition metal complexes. In: Means J. L. and Hinchee R. E. (eds), Wetlands and Remediation. Battelle Press, Columbus, OH, pp. 1–8.

    Google Scholar 

  • O'Loughlin E. J. and Chin Y.-P. 2001. Effect of detector wavelength on the determination of the molecular weight of humic substances by high pressure size exclusion chromatography. Water Res. 35: 333–338.

    Google Scholar 

  • O'Loughlin E. J., Traina S. J. and Chin Y.-P. 2000. Association of organotin compounds with aquatic and terrestrial humic substances. Environ. Toxicol. Chem. 19: 2015–2021.

    Google Scholar 

  • O'Loughlin E. J., Ma H. and Burris D. R. 2003. Catalytic effects of Ni-humic complexes on the reductive dehalogenation of chlorinated C1 and C2 hydrocarbons. In: Ghabbour E. A. and Davies G. (eds), Humic Substances: Nature 's Most Versatile Materials. Taylor and Francis, Inc., New York, pp. 295–322.

    Google Scholar 

  • Orem W. H. and Gaudette H. E. 1984. Organic matter in anoxic marine pore water: oxidation effects. Org. Geochem. 5: 175–181.

    Google Scholar 

  • Orem W. H., Hatcher P. G., Spiker E. C., Szeverenyi N. M. and Maciel G. E. 1986. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda. Geochim. Cosmochim. Acta 50: 609–618.

    Google Scholar 

  • Ortego L. S. and Benson W. H. 1992. Effects of dissolved humic materials on the toxicity of selected pyrethroid insecticides. Environ. Toxicol. Chem. 11: 261–265.

    Google Scholar 

  • Papadimitriou S., Kennedy H., Bentaleb I. and Thomas D. N. 2002. Dissolved organic carbon in sediments from the eastern North Atlantic. Mar. Chem. 79: 37–47.

    Google Scholar 

  • Perminova I. V., Grechishcheva N. Y. and Petrosyan V. S. 1999. Relationships between structure and binding a. nity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environ. Sci. Technol. 33: 3781–3787.

    Google Scholar 

  • Perminova I. V., Frimmel F. H., Kudryavtsev A. V., Kulkova N. A., Abbt-Braun G., Hesse S. and Petrosyan V. S. 2003. Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation. Environ. Sci. Technol. 37: 2477–2485.

    Google Scholar 

  • Rand M. C., Greenberg A. E. and Taras M. J. (eds)1976. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, DC.

    Google Scholar 

  • Skrabal S. A., Donat J. R. and Burdige D. J. 2000. Pore water distributions of dissolved copper and copper-complexing ligands in estuarine and coastal marine sediments. Geochim. Cosmochim. Acta 64: 1843–1857.

    Google Scholar 

  • Stewart A. J. and Wetzel R. G. 1981. Asymmetrical relationships between absorbance, fluorescence, and dissolved organic carbon. Limnol. Oceanogr. 26: 590–597.

    Google Scholar 

  • Sugimura Y. and Suzuki Y. 1988. A high temperature catalytic oxidation method for the deter-mination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem. 24: 105.

    Google Scholar 

  • Thamdrup B., Finster K., Fossing H., Hansen J. W. and Jørgensen B. B. 1994. Thiosulfate and sul te distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry. Geochim. Cosmochim. Acta 58: 67–73.

    Google Scholar 

  • Theis T. L. and Singer P. C. 1973. The stabilization of ferrous iron by organic compounds in natural waters. In: Singer P. C. (ed), Trace Metals and Metal-Organic Interactions in Natural Waters. Ann Arbor Science, Ann Arbor, MI, pp. 303–320.

    Google Scholar 

  • Thoma G. J., Koulermos A. C., Valsaraj K. T., Reible D. D. and Thibodeaux L. J. 1991. The effects of pore-water colloids on the transport of hydrophobic organic compounds from bed sediments. In: Baker R. A. (ed), Organic Substances in Sediments and Water: Humics and Soils. Lewis Publishers, Inc., Chelsea, MI, pp. 231–250.

    Google Scholar 

  • Valsaraj K. T. and Sojitra I. 1997. Transport of hydrophobic organic compounds by colloids through porous media. 3. Diffusion from sediment pore water to overlying water in laboratory microcosms. Colloids Surf. A 121: 125–133.

    Google Scholar 

  • Wood S. A. 1996. The role of humic substances in the transport and xation of metals of economic interest (Au, Pt, Pd, U, V). Rev. Ore Geol. 11: 1–31.

    Google Scholar 

  • Yelverton G. F. and Hackney C. T. 1986. Flux of dissolved organic carbon and pore water through the substrate of a Spartina alterni flora marsh in North Carolina. Estuarine, Coastal Shelf Sci. 22: 255–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Loughlin, E.J., Chin, YP. Quantification and characterization of dissolved organic carbon and iron in sedimentary porewater from Green Bay, WI, USA. Biogeochemistry 71, 371–386 (2004). https://doi.org/10.1007/s10533-004-0373-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-0373-x

Navigation