Skip to main content

Advertisement

Log in

Dissolved organic matter (DOM) characterization in subantarctic shallow lakes and beaver ponds

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

One important fraction of carbon (C) in aquatic environments is the dissolved organic matter (DOM). The present study analyzes the optical characteristics of DOM in two common freshwater environments from the southernmost area of Patagonia, Tierra del Fuego (Argentina), shallow lakes and beaver ponds. In contrast to natural shallow lakes, beaver ponds are lentic water bodies created by beavers, which were introduced in the area in the past century. Based on absorbance and fluorescence techniques, we compared shallow lakes and beaver ponds in terms of DOM quantity and quality. Our results reveal that dissolved organic carbon (DOC) concentrations ranged from ~ 3 to 9 mg L−1, and that DOM origin in all the studied environments was allochthonous and highly influenced by terrestrial inputs. The comparison between shallow lakes and beaver ponds showed significantly higher DOC concentration in shallow lakes, while DOM quality in beaver ponds was significantly different. The quality of DOM in beaver ponds was characterized by high aromaticity (SUVA index), high humic content (humification index) and low recently produced DOM (biological index). A possible explanation for this pattern is that they might be more influenced by terrestrial inputs, more likely due to the smaller size and the higher forest cover (~ 47% in comparison to ~ 28% in shallow lakes). Parallel factor modeling (PARAFAC) validated only two humic-like components. This study is the first report that compares DOM quantity and quality in Subantarctic shallow lakes and beaver ponds. Our results confirm the idea of the humic shallow lakes and enlighten new features of the DOM quality in beaver ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available upon reasonable request.

References

  • Adrian R, Oreilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr. https://doi.org/10.4319/lo.2009.54.6_part_2.2283

    Article  PubMed  PubMed Central  Google Scholar 

  • Aiken G (2014) Fluorescence and dissolved organic matter. In aquatic organic matter fluorescence. Cambr Univ Press. https://doi.org/10.1017/cbo9781139045452.005

    Article  Google Scholar 

  • Aitkenhead-Peterson JA, McDowell WH, Neff JC (2003) Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. Aqua Ecosyst. https://doi.org/10.1016/b978-012256371-3/50003-2

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Bailey DR, Dittbrenner BJ, Yocom KP (2018) Reintegrating the North American beaver (Castor canadensis) in the urban landscape. Wires Water 6(1):1–15. https://doi.org/10.1002/wat2.1323

    Article  Google Scholar 

  • Bastidas Navarro M, Balseiro E, Modenutti B (2014) Bacterial community structure in patagonian Andean Lakes above and below timberline: from community composition to community function. Microb Ecol 68(3):528–541

    Article  PubMed  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600. https://doi.org/10.1038/ngeo618

    Article  CAS  Google Scholar 

  • Burchsted D, Daniels M, Thorson R, Vokoun J (2010) The river discontinuum: applying beaver modifications to baseline conditions for restoration of forested headwaters. Bioscience 60(11):908–922. https://doi.org/10.1525/bio.2010.60.11.7

    Article  Google Scholar 

  • Catalán N, Herrero Ortega S, Gröntoft H, Hilmarsson TG, Bertilsson S, Wu P, Levanoni O, Bishop K, Bravo AG (2016) Effects of beaver impoundments on dissolved organic matter quality and biodegradability in boreal riverine systems. Hydrobiologia 793(1):135–148. https://doi.org/10.1007/s10750-016-2766-y

    Article  CAS  Google Scholar 

  • Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346

    Article  CAS  Google Scholar 

  • Coble PG, del Castillo CE, Avril B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res II 45:2195–2223

    Article  CAS  Google Scholar 

  • Coronato A, Mazzoni E, Vázquez M, Coronato F (2017) Patagonia: Una síntesis de su geografía física. Universidad Nacional de la Patagonia Austral 1:218

  • de Stefano LG, Valdivia AS, Gianello D, Gerea M, Reissig M, García PE, García RD, Cárdenas CS, Diéguez MC, Queimaliños CP, Pérez GL (2022) Using CDOM spectral shape information to improve the estimation of DOC concentration in inland waters: a case study of Andean Patagonian Lakes. Sci Total Env. https://doi.org/10.1016/j.scitotenv.2022.153752

    Article  Google Scholar 

  • del Vecchio R, Blough NV (2004) On the origin of the optical properties of humic substances. Environ Sci Technol 38(14):3885–3891. https://doi.org/10.1021/es049912h

    Article  CAS  PubMed  Google Scholar 

  • Eljall A, Dieguez H, Menvielle MF, Hodara K (2019) Distribution and spatial patterns of the impacts of an exotic and invasive ecosystem engineer: Castor canadensis in Tierra del Fuego. Argent Ecol Austral 29(01):063–071

    Article  Google Scholar 

  • Fichot CG, Benner R (2012) The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol Oceanogr 57(5):1453–1466. https://doi.org/10.4319/lo.2012.57.5.1453

    Article  CAS  Google Scholar 

  • Garcia RD, Reissig M, Queimaliños CP, Garcia PE, Dieguez MC (2015) Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. Sci Total Environ 521–522(1):280–292. https://doi.org/10.1016/j.scitotenv.2015.03.102

    Article  CAS  PubMed  Google Scholar 

  • García VJ, Rodríguez P (2018) Efecto del castor en el metabolismo del perifiton y en variables limnológicas de ríos y arroyos fueguinos. Ecol Austral 28:593–605

    Article  Google Scholar 

  • García RD, Diéguez MDC, Gerea M, García PE, Reissig M (2018) Characterization and reactivity continuum of dissolved organic matter in forested headwater catchments of Andean Patagonia. Freshwater Biol 63(9):1049–1062. https://doi.org/10.1111/fwb.13114

    Article  CAS  Google Scholar 

  • García RD, Messetta ML, Feijoó C, García PE (2019) Assessment of variations in dissolved organic matter in contrasting streams in the Pampas and Patagonian regions (Argentina). Mar Freshw Res 70(5):698–707. https://doi.org/10.1071/MF18156

    Article  CAS  Google Scholar 

  • García PE, Mansilla Ferro CF, Diéguez MC (2022a) Characterization of dissolved organic matter from temperate wetlands: field dynamics and photoreactivity changes driven by natural inputs and diagenesis along the hydroperiod. NZ J Mar Freshwat Res. https://doi.org/10.1080/00288330.2022.2064882

    Article  Google Scholar 

  • García VJ, Hotchkiss ER, Rodríguez P (2022b) Ecosystem metabolism in sub-Antarctic streams and rivers impacted by non-native beaver. Aquat Sci 84(4):1–11

    Article  Google Scholar 

  • Hansen AM, Kraus TEC, Pellerin BA, Fleck JA, Downing BD, Bergamaschi BA (2016) Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnol Oceanogr 61(3):1015–1032. https://doi.org/10.1002/lno.10270

    Article  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3):955–969

    Article  Google Scholar 

  • Henn JJ, Anderson CB, Pastur GM (2016) Landscape-level impact and habitat factors associated with invasive beaver distribution in Tierra del Fuego. Biol Invasions 18:1679–1688

    Article  Google Scholar 

  • Huertas Herrera A, Lencinas MV, Toro Manríquez M, Miller JA, Pastur GM (2020) Mapping the status of the North American beaver invasion in the Tierra del Fuego archipelago. PLoS ONE. https://doi.org/10.1371/journal.pone.0232057

    Article  PubMed  PubMed Central  Google Scholar 

  • Huguet A, Vacher L, Saubusse S, Etcheber H, Abril G, Relexans S, Ibalot F, Parlanti E (2010) New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Org Geochem 41(6):595–610. https://doi.org/10.1016/j.orggeochem.2010.02.006

    Article  CAS  Google Scholar 

  • Iturraspe R, Urcioulo A (2000) Clasificación y caracterización de las cuencas hídricas de Tierra del Fuego. XVIII Congreso Nacional del Agua-Termas de Rio Hondo, Santiago del Estero

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. In Ecosystem management (pp. 130–147). Springer, New York, NY. https://doi.org/10.2307/3545850

  • Jusim P, Goijman AP, Escobar J, Carranza ML, Schiavini A (2020) First test for eradication of beavers (Castor canadensis) in Tierra del Fuego. Argent Biol Invasions 22(12):3609–3619. https://doi.org/10.1007/s10530-020-02344-z

    Article  Google Scholar 

  • Kothawala DN, Evans RD, Dillon PJ (2006) Changes in the molecular weight distribution of dissolved organic carbon within a Precambrian shield stream. Water Resour Res. https://doi.org/10.1029/2005WR004441

    Article  Google Scholar 

  • Kritzberg ES, Cole JJ, Pace ML, Granéli W, Bade DL (2004) Autochthonous versus allochthonous carbon sources of bacteria: Results from whole-lake 13 C addition experiments. Limnol Oceanogr 49(2):588–596

    Article  CAS  Google Scholar 

  • Margolis BE, Castro MS, Raesly RL (2001) The impact of beaver impoundments on the water chemistry of two Appalachian streams. Can J Fish Aquat Sci 58(11):2271–2283. https://doi.org/10.1139/cjfas-58-11-2271

    Article  CAS  Google Scholar 

  • McCallister SL, Ishikawa NF, Kothawala DN (2018) Biogeochemical tools for characterizing organic carbon in inland aquatic ecosystems. Limnol Oceanograp Lett 3(6):444–457. https://doi.org/10.1002/lol2.10097

    Article  Google Scholar 

  • Modenutti B, Bastidas Navarro M, Martyniuk N, Balseiro E (2018) Melting of clean and debris‐rich ice differentially affect nutrients, dissolved organic matter and bacteria respiration in the early ontogeny of the newly formed proglacial Ventisquero Negro Lake (Patagonia Argentina). Freshwater Biology 63(11):1341–1351. https://doi.org/10.1111/fwb.13161

  • Moore TR (2003) Dissolved organic carbon in a northern boreal landscape. Global Biogeochemical Cycles 17(4). https://doi.org/10.1029/2003gb002050

    Article  Google Scholar 

  • Moore DM (1983) Flora of Tierra del Fuego. Anthony Nelson Publisher, Owestry, England, I-IX: 1-396

  • Murphy KR, Butler KD, Spencer RG, Stedmon CA, Boehme JR, Aiken GR (2010) Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ Sci Technol 44(24):9405–9412

    Article  CAS  PubMed  Google Scholar 

  • Murphy KR, Stedmon CA, Wenig P, Bro R (2014) OpenFluor- An online spectral library of auto-fluorescence by organic compounds in the environment. Anal Methods 6(3):658–661. https://doi.org/10.1039/c3ay41935e

    Article  CAS  Google Scholar 

  • Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36(4):742–746. https://doi.org/10.1021/es0155276

    Article  CAS  PubMed  Google Scholar 

  • Pietrek AG, Fasola L (2014) Origin and History of the beaver introduction in South America. Mastozoologia Neotropical 21(2):355–359

    Google Scholar 

  • Queimaliños C, Reissig M, Pérez GL, Soto Cárdenas C, Gerea M, Garcia PE, García D, Diéguez MC (2019) Linking landscape heterogeneity with lake dissolved organic matter properties assessed through absorbance and fluorescence spectroscopy: spatial and seasonal patterns in temperate lakes of Southern Andes (Patagonia, Argentina). Sci Total Environ 686:223–235. https://doi.org/10.1016/j.scitotenv.2019.05.396

    Article  CAS  PubMed  Google Scholar 

  • Quirós R, Drago E (1999) The environmental state of Argentinean lakes: An over view. Lakes and Reservoirs: Research and Management 4:55–64

  • Rodríguez P, González Garraza G, García V, Granitto M, Escobar J (2020) Beaver dam effect on phytoplankton and periphyton composition and hydrology in streams from Tierra del Fuego (Argentina). Hydrobiologia 847(6):1461–1477. https://doi.org/10.1007/s10750-020-04201-5

    Article  CAS  Google Scholar 

  • Rodríguez P, González Garraza G, López R, Coronato A, Mataloni G, Granitto M, Malits A, Veira F (2023) Caracterización limnológica, estructura del fitoplancton y batimetría de Laguna Negra, un lago coloreado del Parque Nacional Tierra del Fuego (Argentina). Ecol Austral 33:285–299

    Article  Google Scholar 

  • Saad JF, Schiaffino MR, Vinocur A, Ofarrell I, Tell G, Izaguirre I (2013) Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. J Plankton Res 35(6):1220–1233. https://doi.org/10.1093/plankt/fbt075,available

    Article  CAS  Google Scholar 

  • Saad JF, Unrein F, Tribelli PM, López N, Izaguirre I (2016) Influence of lake trophic conditions on the dominant mixotrophic algal assemblages. J Plankton Res 38(4):818–829. https://doi.org/10.1093/plankt/fbw029

    Article  CAS  Google Scholar 

  • Soto Cárdenas C, Gerea M, Garcia PE, Pérez GL, Diéguez MC, Rapacioli R, Reissig M, Queimaliños C (2017) Interplay between climate and hydrogeomorphic features and their effect on the seasonal variation of dissolved organic matter in shallow temperate lakes of the Southern Andes (Patagonia, Argentina): a field study based on optical properties. Ecohydrology 10(7):1–19. https://doi.org/10.1002/eco.1872

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S (2005) Resolving the variability of dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50(2):686–697

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82(3–4):239–254. https://doi.org/10.1016/S0304-4203(03)00072-0

    Article  CAS  Google Scholar 

  • Stedmon CA, Thomas DN, Granskog M, Kaartokallio H, Papadimitriou S, Kuosa H (2007) Characteristics of dissolved organic matter in baltic coastal sea ice: Allochthonous or autochthonous origins? Environ Sci Technol 41(21):7273–7279. https://doi.org/10.1021/es071210f

    Article  CAS  PubMed  Google Scholar 

  • Stedmon CA, Nelson NB (2015) The Optical Properties of DOM in the Ocean. In Biogeochemistry of Marine Dissolved Organic Matter: Second Edition Elsevier Inc. 481–508. https://doi.org/10.1016/B978-0-12-405940-5.00010-8

  • Valderrama JC (1981) The simultaneous analysis of total Nitrogen and total Phosphorus in natural waters. Mar Chem 10:109–122

    Article  CAS  Google Scholar 

  • Westbrook CJ, Cooper DJ, Anderson CB (2017) Alteration of hydrogeomorphic processes by invasive beavers in southern South America. Sci Total Env. https://doi.org/10.1016/j.scitotenv.2016.09.045

    Article  Google Scholar 

  • Wetzel R (1992) Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229:181–198

    Article  CAS  Google Scholar 

  • Wetzel R (2001) Limnology. Academic Press, San Diego, Lake and River Ecosystems

    Google Scholar 

  • Williamson CE, Brentrup JA, Zhang J, Renwick WH, Hargreaves BR, Knoll LB, Overholt EP, Rose KC (2014) Lakes as sensors in the landscape: optical metrics as scalable sentinel responses to climate change. Limnol Oceanogr. https://doi.org/10.4319/lo.2014.59.3.0840

    Article  Google Scholar 

  • Zagarese HE, Ferraro M, Queimaliños C, Diéguez MDC, Suárez DA, Llames ME (2017) Patterns of dissolved organic matter across the Patagonian landscape: a broad-scale survey of Chilean and Argentine lakes. Mar Freshw Res 68(12):2355–2365. https://doi.org/10.1071/MF17023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Juan Miller from SIAG (Servicio de información Ambiental y Geográfica, CADIC) for providing us meteorological data; “Administración de Parques Nacionales”, that granted the permission to study the National Park; “Dirección General de Recursos Hídricos”, “Estancia Harberton” and Andrés from Valle Hermoso. We are grateful to the field assistance given by Julio Escobar, Laura Wolinski, Amalia Bursztyn Fuentes, Cecilia Gutierrez, Mariano Iseas, Verónica Pancotto, Lucía Chiberry, Florencia Rossi, María Granitto and Pablo Jusim. We are grateful to the three anonymous reviewers who kindly improved the quality of the manuscript.

Funding

This research was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2019-0026, IR: Patricia García; PICT 2017-0164, IR: Patricia Rodríguez).

Author information

Authors and Affiliations

Authors

Contributions

PR designed the study. MVC, MCMT and PR conducted the field measurements. MVC and PEG processed samples and data. MVC and PEG wrote the first draft of the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to María V. Castro.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 65 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, M.V., García, P.E., Maluendez Testoni, M.C. et al. Dissolved organic matter (DOM) characterization in subantarctic shallow lakes and beaver ponds. Aquat Sci 85, 72 (2023). https://doi.org/10.1007/s00027-023-00969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-023-00969-5

Keywords

Navigation