Skip to main content

Advertisement

Log in

Nitrogen deposition and carbon sequestration in alpine meadows

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of 15N tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of 15N tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts R. and De Caluwe H. 1999. Nitrogen deposition affects on carbon dioxide and methane emissions from temperate peatland soils. Oikos 84: 44–54.

    Google Scholar 

  • Apps M. J. and Kurtz W. A. 1994. In: Kanninen M. (ed.), Carbon Balance of World 's Forested Ecosystem Towards a Global Assessment. Academy of Finland, Helsinki.

    Google Scholar 

  • Arnebrant K., Ba ¢ªa ¢ªth E., So ¨derstro ¨n B. and Norhrstedt H.-o ¨. 1996. Soil microbial activity in eleven Swedish coniferous forests in relation to site fertility and nitrogen fertilization. Scand. J. Forest Res. 11: 1–6.

    Google Scholar 

  • Bao X. K., Cao G. M. and Gao Y. X. 1995. Accumulation of organic matter in Cryo-sod soil. Approach on Chinese Soil Tax. pp. 152–160.

  • Braswell B. H., Schimel D. S. and Linder E. et al. 1997. The response of global terrestrial ecosystems to interannual temperature variability. Science 278: 870–872.

    Google Scholar 

  • Berg B. and Matzner E. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ. Rev. 5: 1–25.

    Google Scholar 

  • Berg B. and Tamm C. O. 1991. Decomposition and nutrient dynamics of litter in long-term opti-mum nutrition experiments. I. Organic matter decomposition in Picea abies needle litter. Scand. J. Forest Res. 6: 305–321.

    Google Scholar 

  • Billings W. D., Peterson K. M. and Shaver G. R. 1977. Growth, turnover, and respiration rates of roots and tillers in tundra graminoids. In: Tieszen L. L. (ed.), Vegetation and Production Ecology of an Alaskan Arctic Tundra. Springer-Verlag, New York, pp. 415–434.

    Google Scholar 

  • Billings W. D., Peterson K. M., Shaver C. G. and Trent A. W. 1978. Root growth, respiration, and carbon dioxide evolution in an arctic tundra soil. Arc. Alp. Res. 9: 129–137.

    Google Scholar 

  • Bonan G. B. 1993. Physical controls of the carbon balance of boreal forest ecosystems. Can. J. Forest Res. 23: 1453–1471.

    Google Scholar 

  • Bowman W. D. and Steltzer H. 1998. Positive feedbacks to anthropogenic nitrogen deposition in Rocky Mountain alpine tundra. Ambio 27: 514–517.

    Google Scholar 

  • Bremner J. M. 1965. Inorganic forms of nitrogen. In: Black C. A. (ed.), Methods of Soil Analysis Vol. 2. American Society of Agronomy, Madison, pp. 1179–1237.

    Google Scholar 

  • Broadbent F. E. and Nakashima T. 1971. Effect of added salts on nitrogen mineralization in three California soils. Soil Sci. Soc. Am. Proc. 35: 457–460.

    Google Scholar 

  • Brookes P. C., Landman A., Pruden G. and Jenkinson D. S. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Bio. Biochem. 17: 837–842.

    Google Scholar 

  • Buresh R. J., Austin E. R. and Creswell E. T. 1982. Analytical methods in 15 N research. Fer. Res. 3: 37–47.

    Google Scholar 

  • Cao G. M. and Zhang J. X. 1999. The nitrogen cycle in an alpine meadow ecosystem. Acta Eco. Sin. 19: 509–513.

    Google Scholar 

  • Cao G. M. and Zhang J. X. 2001. Soil nutrition and substance cycle of Kobresia meadow. In: Zhou X. M. (ed.), Alpine Kobresia Meadows in China. Science Press, Beijing, pp. 188–216.

    Google Scholar 

  • Cao G. M., Tang Y. H., Mo W. H., Wang Y. S., Li Y. N. and Zhao X. Q. 2004. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Bio. Biochem. 36: 237–243.

    Google Scholar 

  • Cao G. M., Zhang J. X., Zhao X. Q., Li Y. N. and Zhou X. M. 2003. Methods of estimating CO2 emissions from Mat Cry-sod soil. ACTA Pedologica Sinica 39(2): 261–267.

    Google Scholar 

  • Cao M. K., Prince S. D., Li K. R., Tao B., Small J. and Shao X. M. 2003. Response of terrestrial carbon uptake to climate interannual variability in China. Glob. Change Biol. 9: 536–546.

    Google Scholar 

  • Castro M. S., Peterjohn W. T., Melillo J. M. and Steudler P. A. 1994. Effects of nitrogen fertilization on the. uxes of N2 O, CH4, and CO2 from soils in a Florida slash pine plantation. Can. J. Forest Res. 24: 9–13.

    Google Scholar 

  • Chapin F. S. III, Miller P. C., Billings W. D. and Coyne P. I. 1980. Carbon and nutrient budgets and their control in coastal tundra. In: Brown J., Miller P. C., Tieszen L. L. and Bunnell F. L. (eds), An Arctic Ecosystem: The Coastal Tundra at Barrow Alaska. Dowden, Hutchinson and Ross, Stroudsburg, P. A., U. S. A., pp. 458–482.

    Google Scholar 

  • Chinese Soil Taxonomy Research Group 1995. Chinese Soil Taxonomy. Science Press, Beijing, pp. 58–147.

    Google Scholar 

  • Crutzen P. J. and Andreae M. O. 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250: 1669–1678.

    Google Scholar 

  • Davidson E. A., Eckert R. W., Hart S. C. and Firestone M. K. 1989. Direct extraction of microbial biomass nitrogen from forest and grassland soils of California. Soil Bio. Biochem. 21: 773–777.

    Google Scholar 

  • Fang J. Y., Chen A. P., Peng C. H., Zhao S. Q. and Ci L. J. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292: 2320–2322.

    Google Scholar 

  • Fenn M. 1991. Increased sited fertility and litter decomposition rate in high-pollution sites in San Bernardino Mountains. Forest Sci. 37: 1163–1181.

    Google Scholar 

  • Fog K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biol. Rev. 63: 433–462.

    Google Scholar 

  • Gallardo A. and Schlesinger W. H. 1994. Factors limiting microbial biomass in the mineral soil and forest. oor of a warm-temperate forest. Soil Bio. Biochem. 26: 1409–1415.

    Google Scholar 

  • Galloway J. N., Levy H. and Kasibhatla P. S. 1994. Year 2020: consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23: 120–123.

    Google Scholar 

  • Galloway J. N., Schlesinger W. H., Levy H., Michael A. and Trolier M. 1995. Nitrogen xation: Anthropogenic enhancement-environmental response. Glob. Biogeochem. Cycle 9: 235–252.

    Google Scholar 

  • Hanson P. J., Edwards N. T., Carten C. T. and Andrews J. A. 2000. Separating root and soil microbial contribution to soil respiration: a review of methods and observations. Biogeochemistry 48: 115–146.

    Google Scholar 

  • Heer C. and Ko ¨rner C. 2002. High elevation pioneer plants are sensitive to mineral nutrient addition. Basic Appl. Ecol. 3(1): 39–47.

    Google Scholar 

  • Hobbie S. E. 2000. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3: 484–494.

    Google Scholar 

  • Holland E. A. and Brown S. 1999. North American carbon sink. Science 283: 1815.

    Google Scholar 

  • Holland E. A., Braswell B. H., Lamasque T. F., Townsend A., Sulzman T., Muller T. F., Dentener F., Brasseur G., Levy II H., Penner T. E. and Roelofs G. T. 1997. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res. 102: 15849–15866.

    Google Scholar 

  • Hu Q. W., Cao G. M., Wu Q., Li D. and Wang T. S. 2004. Comparative study on CO2 emission rate from different alpine ecosystems during grass exuberance period. J. Geographys. Sci. 14: 167–176.

    Google Scholar 

  • Hunt H. W., Ingham E. R., Coleman D. C., Elliott E. T. and Reid C. P. P. 1988. Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology 69: 1009–1016.

    Google Scholar 

  • Jiang W. B., Wang Q. L., Yang T. and Geng B. W. 1995. Seasonal dynamics of cellulose decomposition in alpine meadow soil. Alpine Meadow Eco. 4: 187–187.

    Google Scholar 

  • Kalembasa S. J. and Jenkinson D. S. A 1973. Comparative study of titrimetric and gravimetric methods for determination of organic carbon in soil. J. Sci. Food Agr. 24: 1085–1090.

    Google Scholar 

  • Kuperman R. G. 1996. Relationships between soil properties and community structure of soil macroinvertebrates in oak-hickory forests along an acidic deposition gradient. Appl. Soil Eco. 4: 125–137.

    Google Scholar 

  • Legg J. Q. and Stanford G. 1967. Utilization and fertilizer by oats in relation to the available N status of soils. Soil Sci. Soc. Am. Proc. 31: 215–219.

    Google Scholar 

  • Liu Y. F., Ouyang H., Cao G. M., Luo J., Zhang X. Z., Zhao X. Q. and Yang Q. W. 2001. Soil carbon emission from ecosystems of eastern Qinghai-Tibet Plateau. J. Nat. Res. 16(2): 152–160.

    Google Scholar 

  • Magill A. H. and Aber J. D. 1998. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203: 301–311.

    Google Scholar 

  • Ma ¨kipa ¨a ¨R. 1995. Effect of nitrogen input on carbon accumulation of boreal forest soils and ground vegetation. For. Eco. Manage. 79: 217–226.

    Google Scholar 

  • Ma ¢ªnsson K. F. and Falkengren-Grerup U. 2003. The effect of nitrogen deposition on nitrification, carbon and nitrogen mineralization and litter C: N ratios in oak (Quercus robur L.)forests. For. Eco. Manage., 179: 455–467.

    Google Scholar 

  • Marshall J. D. and Perry D. A. 1987. Basal and maintenance respiration of mycorrhizal and non-mycorrhizal root systems of conifers. C. J. Forest Res. 17: 872–877.

    Google Scholar 

  • Matson P., Lohse K. A. and Hall S. J. 2002. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31: 113–119.

    Google Scholar 

  • Matthews E. 1994. Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Glob. Biogeochem. Cycle 8: 411–439.

    Google Scholar 

  • Nadelhoffer K. J., Emmett B. A., Gundersen P., Kjønaas O. J., Koopmans C. J., Schleppi P., Tietema A. and Wright R. F. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145–148.

    Google Scholar 

  • Ne. J. C., Townsend A. R., Gleixner G., Lehman S., Turnbell J. and Bowman W. D. 2002. Variable effects of nitrogen additions on stability and turnover of soil carbon. Nature 419: 915–917.

    Google Scholar 

  • Nissinen A. and Hari P. 1998. Effects of nitrogen deposition on tree growth and soil nutrients in boreal Scott pine stands. Environ. Pollu. 102: 61–68.

    Google Scholar 

  • Osono T. and Takeda H. 2001. Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur. J. Soil Biol. 37: 17–23.

    Google Scholar 

  • Persson T. and Wire ´n A. 1989. Microbial activity in forest soils in relation to acid/base and carbon/ nitrogen status. Meddelelser fra Norsk institutt for skogforskning 42(1): 83–94.

    Google Scholar 

  • Persson T., Karlsson P. S., Seyferth U., Sjo ¨berg R. M. and Rudebeck A. 2000. Carbon mineralization in European forest soils. In: Schulze and E.-D. (ed.), Ecological Studies-Carbon and Nitrogen Cycling in European Forest Ecosystems. Springer, Berlin, pp. 257–275.

    Google Scholar 

  • Peterson B. J. and Melillo J. M. 1985. The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B: 117–127.

    Google Scholar 

  • Prescott C. E. 1995. Does nitrogen availability control rates of litter decomposition in forests? Plant Soil 168: 83–88.

    Google Scholar 

  • Prescott C. E., Kabzams R. and Zabek L. M. 1999. Effects of fertilization on decomposition rate of Populus tremuloides foliar in a boreal forest. Can. J. Forest Res. 29: 393–397.

    Google Scholar 

  • Proscott C. E., Corbin J. P. and Parkinson D. 1992. Immobilization and availability of N and P in the forest. oors of fertilized Rocky Mountain coniferous forests. Plant and Soil 143: 1–10.

    Google Scholar 

  • Pruden G., Powlson D. S. and Jenkinwson D. S. 1985. The measurement of 15 N in soil and plant material. Fert. Res. 6: 205–218.

    Google Scholar 

  • Ryan M. G., Lavigne M. G. and Gower S. T. 1997. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. 102(D24): 28871–28884.

    Google Scholar 

  • Saiya-Cork K. R., Sinsabaugh R. L. and Zak D. R. 2002. The effects of long term nitrogen deposition on extracelluar enzyme activity in an Acer saccharum forest soil. Soil Bio. Biochem. 34: 1309–1315.

    Google Scholar 

  • Saphozhnikov N. A., Nesterova E. I., Rusinova I. P., Sirota L. B. and Vanova T. K. L. 1969. The effect of fertilizer nitrogen on plant uptake of nitrogen from different podzolic soils. Trans. Int. Congr. Soil Sci. 9th, 2: 467–474.

    Google Scholar 

  • Schimel D. 1995. Terrestrial ecosystems and carbon cycle. Glob. Change Biol. 1: 77–91.

    Google Scholar 

  • Schindler D. W. and Bayley S. E. 1993. The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition. Glob. Biogeochem. Cycle 7(4): 717–733.

    Google Scholar 

  • So ¨derstro ¨m B., Ba ¢ªa ¢ªth E. and Lundgren B. 1983. Decrease in soil activity and biomass owing to nitrogen amendments. Can. J. Microbiol. 29: 1500–1506.

    Google Scholar 

  • Speicker H., Mielika ¨inen K., Ko ¨hl M. and Skovsgaard J. P. 1996. Growth Trends in European Forests. Springer, Berlin.

    Google Scholar 

  • Townsend A. R., Braswell B. H., Holland E. A. and Penner J. E. 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Eco. Appl. 6: 806–814.

    Google Scholar 

  • Turner D. P., Koerper G. J., Harmon M. E. and Lee J. J. 1995. A carbon budget for forests of the conterminous United States. Ecol. Appl. 5: 421–436.

    Google Scholar 

  • Van Ginkel J. H., Whitmore A. P. and Gorissen A. 1999. Lolium perenne grasslands may function as a sink for atmospheric carbon dioxide. J. Environ. Qual. 28: 1580–1584.

    Google Scholar 

  • Vestgargen L. S. 2001. Carbon and nitrogen turnover in the early stage of Scots pine (Iinus sylvestris L.)needle litter decomposition: effects of internal and external nitrogen. Soil Bio. Biochem. 33: 465–474.

    Google Scholar 

  • Vitousek P. M. and Howarth R. W. 1991. Nitrogen limitation on land and sea: how can it occur? Biogeochemistry 5: 7–34.

    Google Scholar 

  • Vitousek P. M., Aber J. D., Howarth R. W., Likens G. E., Matson P. A., Schindler D. W., Schlesinger W. H. and Tilman D. G. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7(3): 737–750.

    Google Scholar 

  • Wang Q. L. and Li J. Z. 1995. Seasonal dynamics of fungal biomass in different vegetation soil of alpine meadow ecosystem. Alpine Meadow Eco. 4: 169–178.

    Google Scholar 

  • Westerman R. L. and Kurtz L. T. 1973. Priming effect of 15 N-labelled fertilizers on soil nitrogen in field experiments. Soil Sci. Soc. Am. Proc. 37: 725–727.

    Google Scholar 

  • Westerman R. L. and Kurtz L. T. 1974. Effects of salts and salts plus nitrogen-15-labelled ammo-nium chloride in mineralization of soil nitrogen nitrification, and immobilization. Soil Sci. Soc. Am. Proc. 38: 602–605.

    Google Scholar 

  • Xu X. L., Ouyang H., Pei Z. Y. and Zhou C. P. 2003. Fate of 15N labeled nitrate and ammonium salts added to an alpine meadow in the Qinghai-Xizang Plateau, China. Acta Bot. Sin. 45(3): 276–281.

    Google Scholar 

  • Xu X. L., Ouyang H., Pei Z. Y. and Zhou C. P. 2004. Long-term partitioning of ammonium and nitrate among different components in an alpine meadow ecosystem. Acta Bot. Sin. 46(3): 279–283.

    Google Scholar 

  • Zhang J. X., Cao G. M. and Zhou D. W. 2001. Duel and seasonal changes of carbon dioxide emission from mollic-cryic cambisols on degraded grassland. Acta Pedol. Sin 38(1): 32–39.

    Google Scholar 

  • Zhou X. M. 1982. Charateristics and main types of Kobresia meadows on the Qinghai-Tibet Plateau. ACTA Biol Plateau Sin. (1): 151–160.

    Google Scholar 

  • Zogg G. P., Zak D. R., Pregiter K. S. and Bruton A. J. 2000. Microbial immobilization and the retention of anthropogenic nitrogen in a northern hardwood forest. Ecology 81: 1858–1866.

    Google Scholar 

  • Zuo K. C. et al. 1986. Preliminary research on the content of plant nutrients of precipition in haibei alpine meadow ecosystem, Qinghai. ACTA Bio. Plateau Sin. (5): 35–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Ouyang, H., Cao, G. et al. Nitrogen deposition and carbon sequestration in alpine meadows. Biogeochemistry 71, 353–369 (2004). https://doi.org/10.1007/s10533-004-0371-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-0371-z

Navigation