Skip to main content
Log in

Application of 13C NMR Spectroscopy to the Study of Soil Organic Matter: A Review of Publications

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Possibilities of NMR spectroscopy with 13C nuclei application to the study of soil organic matter and its various fractions is considered. This is a non-destructive method, which is particularly valuable in the analysis of various fractions of soil organic matter. It is regarded as a direct method, and, unlike most of indirect methods, it allows one to obtain reliable estimates of the ratio between virtually all groups of carbon atoms in different organic molecules, including those in humus specimens. Owing to impulse technique and high sensitivity, 13C-NMR spectra may be obtained immediately from soil samples without any extraction operations. The modern technique of obtaining spectra, their mathematical processing (Fourier transform), and data interpretation are considered. The results of applying 13C-NMR to the study of humus substances, water-soluble fractions of soil organic matter, and soil litters from different natural zones are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Bagautdinova, A. G. Ryumin, I. O. Kechaikina, and S. N. Chukov, “Transformation of humic acids in buried soils,” Vestn. S.-Peterb. Univ., Ser. 3: Biol., No. 2, 92–108 (2012).

    Google Scholar 

  2. D. W. Brown, A. J. Floyd, and M. Sainsbury, Organic Spectroscopy (Wiley, Chichester, 1988; Mir, Moscow, 1992).

    Google Scholar 

  3. S. Wang and Y. Ishii, “13C and 1H solid-state NMR of proteins and other systems under ultra-fast MAS at 80–100 kHz and beyond,” JEOL News 50 (1), 53–57 (2015)

    Google Scholar 

  4. R. S. Vasilevich, V. A. Beznosikov, E. D. Lodygin, and B. M. Kondratenok, “Complexation of mercury(II) ions with humic acids in tundra soils,” Eurasian Soil Sci. 47, 162–172 (2014). doi 10.1134/S1064229314030089

    Article  Google Scholar 

  5. O. V. Vishnyakova, G. D. Chimitdorzhieva, and D. B. Ayurova, “Transformation of humic acids in arable chernozems and meadow-chernozem permafrost soils in Transbaikalia,” Agrokhimiya, No. 10, 3–8 (2011).

    Google Scholar 

  6. B. N. Zolotareva and V. A. Demkin, “Humus in paleosols of archaeological monuments in the dry steppes of the Volga–Don interfluve,” Eurasian Soil Sci. 46, 262–272 (2013). doi 10.1134/S1064229313030149

    Article  Google Scholar 

  7. S. I. Zherebtsov, N. V. Malyshenko, N. V. Sokolov, and N. V. Ismagilov, “Dependence of physiological activity of native and modified humic acids in lignite on the structural-groups composition,” Vestn. Kuzbass. Gos. Tekhn. Univ., No. 4, 108–113 (2016).

    Google Scholar 

  8. A. A. Ivanov, N. V. Yudina, E. V. Mal’tseva, and E. Ya.Matis, “Biostimulating and detoxic properties of humic acids of different origin in oil-polluted soils,” Khim. Rastit. Syr’ya, No. 1, 99–103 (2007).

    Google Scholar 

  9. B. I. Ionin, B. A. Ershov, and A. I. Kol’tsov, NMR Spectroscopy in Organic Chemistry (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  10. B. V. Ioffe, R. R. Kostikov, and V. V. Razin, Physical Analysis of the Structure of Organic Compounds (Vysshaya Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  11. G. A. Kalabin, L. V. Kanitskaya, and D. F. Kushnarev, Quantitative NMR Spectroscopy of Natural Organic Materials and Their Transformation Products (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  12. I. O. Kechaikina, A. G. Ryumin, and S. N. Chukov, “Postagrogenic transformation of organic matter in soddy-podzolic soils,” Eurasian Soil Sci. 44, 1077–1089 (2011).

    Article  Google Scholar 

  13. N. O. Kovaleva and I. V. Kovalev, “Transformation of lignin in surface and buried soils of mountainous landscapes,” Eurasian Soil Sci. 42, 1270–1281 (2009).

    Article  Google Scholar 

  14. N. O. Kovaleva and I. V. Kovalev, “Lignin phenols in soils as biomarkers of paleovegetation,” Eurasian Soil Sci. 48, 946–958 (2015). doi 10.1134/S1064229315090057

    Article  Google Scholar 

  15. D. V. Kovalevskii, A. B. Permin, I. V. Perminova, and V. S. Petroyan, “Selection of registration conditions of quantitative 13C NMR spectra of humic acids,” Vestn. Mosk. Univ., Ser. 2: Khim. 41 (1), 39–42 (2000).

    Google Scholar 

  16. A. I. Kol’tsov and B. A. Ershov, NMR in Organic Chemistry (Leningrad State Univ., Leningrad, 1968) [in Russian].

    Google Scholar 

  17. A. A. Larionova, B. N. Zolotareva, Yu. G. Kolyagin, A. K. Kvitkina, V. V. Kaganov, and V. N. Kudeyarov, “Composition of structural fragments and the mineralization rate of organic matter in zonal soils,” Eurasian Soil Sci. 48, 1110–1119 (2015). doi 10.1134/S1064229315100063

    Article  Google Scholar 

  18. S. P. Li, L. V. Serikova, E. M. Khudaibergenova, and V. A. Prokhorenko, “Catalytic effect of humic acids on hydrolysis of atrazine,” Universum: Khim. Biol., No. 3 (21), (2016). https://doi.org/7universum.com/ru/nature/archive/item/2995.

    Google Scholar 

  19. E. D. Lodygin and V. A. Beznosikov, “The 13C NMR study of the molecular structure of humus acids from podzolic and bog-podzolic soils,” Eurasian Soil Sci. 36, 967–975 (2003).

    Google Scholar 

  20. E. D. Lodygin and V. A. Beznosikov, “13C NMR and ESR study of structural and functional group characteristics of macromolecular compounds of soils,” Russ. J. Appl. Chem. 79, 1478–1484 (2006).

    Article  Google Scholar 

  21. E. D. Lodygin, V. A. Beznosikov, and R. S. Vasilevich, “Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study),” Eurasian Soil Sci. 47, 400–406 (2014). doi 10.1134/S1064229314010074

    Article  Google Scholar 

  22. E. D. Lodygin, V. A. Beznosikov, and S. N. Chukov, Structural-Functional Parameters of Humic Substances of Podzolic and Bog-Podzolic Soils (Nauka, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  23. P. E. Prokhorova, NMR Spectroscopy. Analysis of the Structure of Organic Compounds (Ural Federal Univ., Yekaterinburg, 2010) [in Russian].

    Google Scholar 

  24. M. P. Sartakov “13C NMR spectroscopy of humic acids in peats of Central Ob’ region,” Khim. Rastit. Syr’ya, No. 3, 135–139 (2008).

    Google Scholar 

  25. M. P. Sartakov, A. A. Mironov, S. F. Spiridonova, and I. D. Komissarov, “Stability of humic acids in peats of Ob’–Irtysh floodplain and their molecular structure,” Sib. Vestn. S-kh. Nauki, No. 6, 12–17 (2007).

    Google Scholar 

  26. A. A. Stepanov, L. V. Zharkova, and E. A. Stepanova, “Application of 1H-NMR spectroscopy for the characterization of humic substances,” Eurasian Soil Sci. 30, 142–145 (1997).

    Google Scholar 

  27. O. A. Trubetskoi and O. E. Trubetskaya, “13C-NMR analysis of components of chernozem humic acids and their fractions with different molecular sizes and electrophoretic mobilities,” Eurasian Soil Sci. 44, 281–285 (2011).

    Article  Google Scholar 

  28. U. Haeberlen, High Resolution NMR in Solids, Selective Averaging (Academic, New York, 1976; Mir, Moscow, 1980); M. Mehring, High Resolution NMR in Solids (Springer-Verlag, Berlin, 1976; Mir, Moscow, 1980).

    Google Scholar 

  29. V. A. Kholodov, A. I. Konstantinov, E. Yu. Belyaeva, N. A. Kulikova, A. V. Kiryushin, and I. V. Perminova, “Structure of humic acids isolated by sequential alkaline extraction from a typical chernozem,” Eurasian Soil Sci. 42, 1095–1100 (2009).

    Article  Google Scholar 

  30. V. A. Kholodov, A. I. Konstantinov, A. V. Kudryavtsev, and I. V. Perminova, “Structure of humic acids in zonal soils from 13C NMR data,” Eurasian Soil Sci. 44, 976–983 (2011).

    Article  Google Scholar 

  31. V. A. Kholodov, A. I. Konstantinov, and I. V. Perminova, “The carbon distribution among the functional groups of humic acids isolated by sequential alkaline extraction from gray forest soil,” Eurasian Soil Sci. 42, 1229–1233 (2009).

    Article  Google Scholar 

  32. G. D. Chimitdorzhieva, Organic Matter of Cold Soils, Ed. by M. G. Merkusheva (Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, 2016) [in Russian].

    Google Scholar 

  33. S. N. Chukov, “Study of humus acids in anthropogenically disturbed soils using 13C NMR spectroscopy,” Eurasian Soil Sci. 31, 979–986 (1998).

    Google Scholar 

  34. S. N. Chukov, Structural and Functional Parameters of Soil Organic Matter Under Anthropogenic Load (St. Petersburg State Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  35. S. N. Chukov, E. V. Abakumov, and V. M. Tomashunas, “Characterization of humic acids from Antarctic soils by nuclear magnetic resonance,” Eurasian Soil Sci. 48, 1207–1211 (2015). doi 10.1134/S1064229315110046

    Article  Google Scholar 

  36. S. N. Chukov, M. S. Golubkov, and A. G. Ryumin, “Intrahorizon differentiation of the structural-functional parameters of the humic acids from a typical chernozem,” Eurasian Soil Sci. 43, 1255–1262 (2010).

    Article  Google Scholar 

  37. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy (Pergamon, Oxford, 1965; Mir, Moscow, 1968).

    Google Scholar 

  38. E. Abakumov, “Characterization of humic acids, isolated from selected Subantarctic soils by 13C-NMR spectroscopy,” Czech. Polar. Rep. 7 (1), 1–10 (2017).

    Article  Google Scholar 

  39. E. Abakumov, N. Fujitake, and T. Kosaki, “Humus and humic acids of Luvisol and Cambisol of Jiguli ridges, Samara region, Russia,” Appl. Environ. Soil Sci. 2009 (671359), (2009).

    Google Scholar 

  40. E. Abakumov, E. Lodygin, and V. Tomashunas, “13C NMR and ESR characterization of humic substances isolated from soils of two Siberian Arctic Islands,” Int. J. Ecol. 2015 (390591), (2015). doi 10.1155/2015/390591

    Google Scholar 

  41. E. V. Abakumov, “Elemental composition and structural features of humic substances in young podzols developed on sand quarry dumps,” Eurasian Soil Sci. 42, 616–622 (2009). doi 10.1134/S1064229309060052

    Article  Google Scholar 

  42. E. V. Abakumov, T. Cajthaml, J. Brus, and J. Frouz, “Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining,” J. Soils Sediments 13 (3), 491–500 (2013).

    Article  Google Scholar 

  43. R. J. Abraham and P. Loftus, Proton and Carbon-13 Nuclear Magnetic Resonance Spectroscopy: An Integrated Approach (Heyden, London, 1978).

    Google Scholar 

  44. E. Alarcon-Gutierrezet, C. Floch, C. Augur, J. L. Petit, F. Ziarelli, and S. Criquet, “Spatial variations of chemical composition, microbial functional diversity, and enzyme activities in a Mediterranean litter (Quercus ilex L.) profile,” Pedobiologia 52, 387–399 (2009).

    Article  Google Scholar 

  45. M. A. Alexis, C. Rumpel, and H. Knicker, “Thermal alteration of organic matter during a shrubland fire: A field study,” Org. Geochem. 41 (7), 690–697 (2010).

    Article  Google Scholar 

  46. G. Almendros, F. J. Gonzalez-Vila, and F. Martın, “Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances,” Soil Sci. 149, 158–168 (1990).

    Article  Google Scholar 

  47. G. Almendros, F. J. González-Vila, F. Martín, R. Fründ, and H.-D. Lüdemann, “Solid state NMR studies of fire-induced changes in the structure of humic substances,” Sci. Total Environ. 117–118, 63–74 (1992). doi 10.1016/0048-9697(92)90073-2

    Article  Google Scholar 

  48. D. Asakawa, H. Mochizuki, Y. Yanagi, and N. Fujitake, “Characterization of hydrophobic acid fractions in water-soluble organic matter in dystric Cambisol and in a stream in a small forested watershed: seasonal and vertical variations in chemical properties,” Soil Sci. Plant Nutr. 53 (5), 551–561 (2007).

    Article  Google Scholar 

  49. D. H. R. Barton and M. Schnitzer, “A new experimental approach to the humic acid problem,” Nature 198 (4876), 217–218 (1963). doi 10.1038/198217a0

    Article  Google Scholar 

  50. L. Beyer, “The chemical composition of soil organic matter in classical humic compound fractions and in bulk samples—a review,” J. Plant Nutr. Soil Sci. 159 (6), 527–539 (1996). doi 10.1002/jpln.1996.3581590603

    Google Scholar 

  51. S. P. Brown and L. Emsley, “Solid-state NMR,” in Handbook of Spectroscopy (Wiley, Chichester, 2005). doi 10.1002/3527602305.ch9

    Google Scholar 

  52. A. F. Cano, A. R. Mermut, R. Ortiz, M. B. Benke, and B. Chatson, “13C CP/MAS-NMR spectra of organic matter as influenced by vegetation, climate, and soil characteristics in soils from Murcia, Spain,” Can. J. Soil Sci. 82 (4), 403–411 (2002).

    Article  Google Scholar 

  53. Carbon-13 NMR Spectroscopy of Biological Systems, Ed. by N. Beckmann (Academic, San Diego, 1995). doi 10.1016/B978-0-12-084370-1.50010-1

    Google Scholar 

  54. G. Certini, “Effects of fire on properties of forest soils: a review,” Oecologia 143, 1–10 (2005).

    Article  Google Scholar 

  55. G. Certini, “Fire as a soil-forming factor,” Ambio 43 (2), 191–195 (2013). doi 10.1007/s13280-013-0418-2

    Article  Google Scholar 

  56. G. Certini, C. Nocentini, and H. Knicker, “Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests,” Geoderma 167–168, 148–155 (2011).

    Article  Google Scholar 

  57. B. Chefetz, Y. Hadar, and Y. Chen, “Dissolved organic carbon fractions formed during composting of municipal solid waste: properties and significance,” Acta Hydrochim. Hydrobiol. 26 (3), 172–179 (1998).

    Article  Google Scholar 

  58. H. Chen, J. Zhou, W. Huang, W. Yu, and Z. Win, “Biodegradability of dissolved organic matter derived from rice straw,” Soil Sci. 174 (3), 143–150 (2009).

    Article  Google Scholar 

  59. T. D. W. Claridge, High-Resolution NMR Techniques in Organic Chemistry (Elsevier, Amsterdam, 2016).

    Google Scholar 

  60. P. Conte, A. Piccolo, B. Lagen, P. Buurman, and P. A. Jager, “Quantitative differences in evaluating soil humic substances by liquid-and solid-state 13C-NMR spectroscopy,” Geoderma 80, 339–352 (1997). doi 10.1016/S0016-7061(97)00059-1

    Article  Google Scholar 

  61. P. Cuniasse, P. Tavares, E. V. Orlova, and S. Zinn-Justin, “Structures of biomolecular complexes by combination of NMR and cryoEM methods,” Curr. Opin. Struct. Biol. 43, 104–113 (2017). doi 10.1016/j.sbi.2016.12.008

    Article  Google Scholar 

  62. X. Y. Dai, C. L. Ping, R. Candler, L. Haumaier, and W. Zech, “Characterization of soil organic matter fractions of tundra soils in arctic Alaska by Carbon-13 nuclear magnetic resonance spectroscopy,” Soil Sci. Soc. Am. J. 65, 87–93 (2001).

    Article  Google Scholar 

  63. A. F. Dickens, J. A. Baldock, R. J. Smernik, S. G. Wakeham, T. S. Arnarson, Y. Gelinas, and J. I. Hedges, “Solid-state 13C NMR analysis of size and density fractions of marine sediments: Insight into organic carbon sources and preservation mechanisms,” Geochim., Cosmochim. Acta 70 (3), 666–686 (2006). doi 10.1016/j.gca.2005.10.024

    Article  Google Scholar 

  64. R. M. B. O. Duarte, A. M. S. Silva, and A. C. Duarte, “Two-dimensional NMR studies of water-soluble organic matter in atmospheric aerosols,” Environ. Sci. Technol. 42, 8224–8230 (2008).

    Article  Google Scholar 

  65. A. A. Dymov, E. V. Zhangurov, and F. Hagedorn, “Soil organic matter composition along altitudinal gradients in permafrost affected soils of the subpolar Ural Mountains,” Catena 131, 140–148 (2015). doi 10.1016/j.catena.2015.03.020

    Article  Google Scholar 

  66. E. Ejarque and E. Abakumov, “Stability and biodegradability of organic matter from Arctic soils of Western Siberia: insights from 13C-NMR spectroscopy and elemental analysis,” Solid Earth 7, 153–165 (2016).

    Article  Google Scholar 

  67. M. Farrell, T. K. Kuhn, L. M. Macdonald, T. M. Maddern, D. V. Murphy, P. A. Hall, B. P. Singh, K. Baumann, E. S. Krull, and J. A. Baldock, “Microbial utilization of biochar-derived carbon,” Sci. Total Environ. 465, 288–297 (2013). doi 10.1016/j.scitotenv. 2013.03.090

    Article  Google Scholar 

  68. C. A. Fox, C. M. Preston, and C. A. Fyfe, “Micromorphological and 13C NMR characterization of a humic, lignic, and histic Folisols from British Columbia,” Can. J. Soil Sci. 72, 1–15 (1994).

    Article  Google Scholar 

  69. F. H. Frimmel, F. Saravia, and A. Gorenflo, “NOM removal from different raw waters by membrane filtration,” Water Sci. Technol. 4, 165–174 (2004).

    Google Scholar 

  70. R. Frund, K. Holder, and H. D. Ludemann, “Impacts of soil management practices on the organic matter structure investigations by CPMAS 13C-NMR-spectroscopy,” Z. Pflanzenemahr. Bodenk. 157, 29–35 (1994).

    Article  Google Scholar 

  71. R. Frund and H.-D. Ludemann, “The quantitative analysis of solution-and CPMAS-C-13 NMR spectra of humic material,” Sci. Total Environ. 81–82, 157–168 (1989). doi 10.1016/0048-9697(89)90121-6

    Article  Google Scholar 

  72. A. U. Gehring, G. Guggenberger, W. Zech, and J. Luster, “Combined magnetic, spectroscopic, and analytical-chemical approach to infer genetic information for a Vertisol,” Soil Sci. Soc. Am. J. 61 (1), 78–85 (1997).

    Article  Google Scholar 

  73. G. Guggenberger and W. Zech, “Dissolved organic carbon in forest floor leachates: simple degradation products or humic substances?” Sci. Total Environ. 152 (1), 37–47 (1994). doi 10.1016/0048-9697(94)90549-5

    Article  Google Scholar 

  74. K. D. Hannam, S. A. Quideau, B. E. Kishchuk, S.-W. Oh, and R. E. Wasylishen, “Forest-floor chemical properties are altered by clear-cutting in boreal mixed-wood forest stands dominated by trembling aspen and white spruce,” Can. J. For. Res. 35 (10), 2457–2468 (2005). doi 10.1139/x05-140

    Article  Google Scholar 

  75. R. K. Harris, E. D. Becker, S. M. C. Menezes, P. Granger, R. E. Hoffman, and K. W. Zilm, “Further conventions for NMR shielding and chemical shifts IUPAC recommendations 2008,” Solid State Nucl. Magn. Reson. 33 (3), 41–56 (2008). doi 10.1016/j.ssnmr.2008.02.004

    Article  Google Scholar 

  76. T. Hishinuma, T. Osono, Y. Fukasawa, J. I. Azuma, and H. Takeda, “Application of 13C NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions,” Ann. For. Res. 58 (1), 3–13 (2015).

    Article  Google Scholar 

  77. Humic Substances in the Suwannee River, Georgia; Interactions, Properties, and Proposed Structures: U.S. Geological Survey Water Supply Paper 2373, Ed. by R. C. Averett, (U.S. Geological Survey, Denver, 1994).

    Google Scholar 

  78. A. H. Jafarzadeh-Haghighi, J. Shamshuddin, J. Hamdan, and N. Zainuddin, “Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia,” Open Geosci. 8 (1), 503–513 (2016).

    Article  Google Scholar 

  79. L. M. Jarman and S. Sternhell, Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry (Pergamon, Oxford, 1969).

    Google Scholar 

  80. Y. Kavdir, H. Ekinci, O. Yuksel, and A. R. Mermut, “Soil aggregate stability and 13C CP/MAS-NMR assessment of organic matter in soils influenced by forest wildfires in Canakkale, Turkey,” Geoderma 129 (3–4), 219–229 (2005). doi 10.1016/j.geoderma.2005.01.013

    Article  Google Scholar 

  81. C. Keeler, E. F. Kelly, and G. E. Maciel, “Chemicalstructural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA,” Geoderma 130 (1–2), 124–140 (2006). doi 10.1016/j.geoderma.2005.01.015

    Article  Google Scholar 

  82. C. Keeler and G. E. Maciel, “Quantization in the solid-state 13C NMR analysis of soil and organic soil fractions,” Anal. Chem. 75 (10), 2421–2432 (2003). doi 10.1021/ac020679k

    Article  Google Scholar 

  83. J. Keeler, Understanding NMR Spectroscopy (Wiley, Chichester, 2005).

    Google Scholar 

  84. K. R. Keshari, A. P. Tikunov, H. Lee, and J. M. Macdonald, “Biological applications of hyperpolarized 13CNMR,” in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Ed. by R. Jan (Elsevier, Amsterdam, 2017), pp. 143–148. doi 10.1016/B978-0-12-409547-2.12116-X

    Google Scholar 

  85. H. Knicker, “How does fire affect the nature and stability of soil organic nitrogen and carbon? A review,” Biogeochemistry 85, 91–118 (2007). doi 10.1007/s10533-007-9104-4

    Article  Google Scholar 

  86. A. Köbl and I. Kögel-Knabner, “Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state 13C NMR spectroscopy,” J. Plant Nutr. Soil Sci. 167, 45–53 (2004).

    Article  Google Scholar 

  87. I. Kögel-Knabner, “13C and 15N NMR spectroscopy as a tool in soil organic matter studies,” Geoderma 80 (3–4), 243–270 (1997). doi 10.1016/S0016-7061(97)00055-4

    Article  Google Scholar 

  88. B. C. Liang, E. G. Gregorich, M. Schnitzer, and H. R. Schulten, “Characterization of water extracts of two manures and their absorption on soils,” Soil Sci. Soc. Am. J. 60, 1758–1763 (1996). doi 10.2136/sssaj1996.03615995006000060021x

    Article  Google Scholar 

  89. E. D. Lodygin and V. A. Beznosikov, “The molecular structure and elemental composition of humic substances from Albeluvisols,” Chem. Ecol. 26 (4), 87–95 (2010). doi 10.1080/02757540.2010.497759

    Article  Google Scholar 

  90. K. Lorenz, C. M. Preston, and E. Kandeler, “Soil organic matter in urban soils: estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy,” Geoderma 130, 312–323 (2006).

    Article  Google Scholar 

  91. A. Lupachev, E. Abakumov, and S. Gubin, “The influence of cryogenic mass exchange on the composition and stabilization rate of soil organic matter in Cryosols of the Kolyma lowland (North Yakutia, Russia),” Geosciences (Basel) 7 (2), (2017). doi 10.3390/geosciences7020024

    Google Scholar 

  92. Z. Luz, P. Tekely, and D. Reichert, “Slow exchange involving equivalent sites in solids by one-dimensional MAS NMR techniques,” Prog. Nucl. Magn. Reson. Spectrosc. 41 (1–2), 83–113 (2002). doi 10.1016/S0079-6565(02)00016-X

    Article  Google Scholar 

  93. Magnetic Resonance Spectroscopy: Tools for Neuroscience Research and Emerging Clinical Applications, Ed. by C. Stagg and D. Rothman (Academic, London, 2014). doi 10.1016/B978-0-12-401688-0.00026-4

    Google Scholar 

  94. J. Mao, X. Cao, D. C. Olk, W. Chu, and K. Schmidt-Rohr, “Advanced solid-state NMR spectroscopy of natural organic matter,” Prog. Nucl. Magn. Reson. Spectrosc. 100, 17–51 (2017). doi 10.1016/j.pnmrs.2016.11.003

    Article  Google Scholar 

  95. E. Marin-Spiotta, O. A. Chadwick, M. Kramer, and M. S. Carbone, “Carbon delivery to deep mineral horizons in Hawaiian rain forest soils,” J. Geophys. Res.: Biogeosci. 116 (G03011), (2011). doi 10.1029/2010JG001587

    Google Scholar 

  96. R. Mylotte, V. Verheyen, A. Reynolds, and M. H. B. Hayes, “Isolation and characterization of recalcitrant organic components from an estuarine sediment core,” J. Soils Sediments 15, 211–224 (2015).

    Article  Google Scholar 

  97. A. Nebiosso, P. Mazzei, and D. Savy, “Reduced complexity of multidimensional and diffusion NMR spectra of soil humic fractions as simplified by humeomics,” in Chemical and Biological Technologies in Agriculture (Springer-Verlag, New York, 2014), Vols. 1–24, pp. 1–9.

    Google Scholar 

  98. K. G. J. Nierop, P. Buurman, and J. W. De Leeuw, “Effect of vegetation on chemical composition of H horizons in incipient podzols as characterized by 13C NMR and pyrolysis-GC/MS,” Geoderma 90 (1–2), 111–129 (1999).

    Article  Google Scholar 

  99. C. M. Preston, “Applications of NMR to soil organic matter analysis: history and prospects,” Soil Sci. 161 (3), 144–166 (1996).

    Article  Google Scholar 

  100. C. M. Preston, “Environmental NMR—the early years,” Magn. Reson. Chem. 53 (9), 635–647 (2015). doi 10.1002/mrc.4180

    Article  Google Scholar 

  101. C. M. Preston, “Environmental NMR: solid-state methods,” eMagRes 3 (1), (2014). doi 10.1002/9780470034590.emrstm1338

    Google Scholar 

  102. C. M. Preston and C. M. Preston, “Review of solution NMR of humic substances,” in NMR of Humic Substances and Coal: Techniques, Problems and Solutions, Ed. by R. L. Wershaw and M. A. Mikita (Lewis Publ., Chelsea, 1987).

    Google Scholar 

  103. C. M. Preston, “The application of NMR to organic matter inputs and processes in forest ecosystems of the Pacific northwest,” Sci. Total Environ. 113, 107–120 (1992).

    Article  Google Scholar 

  104. C. M. Preston and A. C. Rusk, A Bibliography of NMR Applications for Forestry Research: Pacific Forestry Center Information Report; BC-X-322 (Victiria, 1990).

    Google Scholar 

  105. S. N. Rosenthal and J. H. Fendler, “13C NMR spectroscopy in macromolecular systems of biochemical interest,” Adv. Phys. Org. Chem. 13, 279–424 (1976). doi 10.1016/S0065-3160(08)60215-4

    Google Scholar 

  106. C. Rumpel, H. Knicker, and I. Kögel-Knabner, “Types and chemical composition of organic matter in reforested lignite-rich mine soils,” Geoderma 86 (1–2), 123–142 (1998).

    Article  Google Scholar 

  107. P. Sannigrahi, E. D. Ingall, and R. Benner, “Cycling of dissolved and particulate organic matter at station Aloha: Insights from 13C NMR spectroscopy coupled with elemental, isotopic and molecular analyses,” Deep Sea Res., Part I 52 (8), 1429–1444 (2005).

    Article  Google Scholar 

  108. J. Schaefer and E. O. Stejskal, “Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle,” J. Am. Chem. Soc. 98, 1031–1032 (1976). doi 10.1021/ja00420a036

    Article  Google Scholar 

  109. M. W. I. Schmidt, H. Knicker, and I. Kögel-Knabner, “Organic matter accumulating in Aeh and Bh horizons of a podzol—chemical characterization in primary organo-mineral associations,” Org. Geochem. 31 (7–8), 727–734 (2000). doi 10.1016/S0146-6380(00)00045-0

    Article  Google Scholar 

  110. I. Schöning and I. Kögel-Knabner, “Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests,” Soil Biol. Biochem. 38 (8), 2411–2424 (2006).

    Article  Google Scholar 

  111. A. J. Simpson and M. J. Simpson, “Nuclear magnetic resonance analysis of natural organic matter,” in Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, Ed. by N. Senesi, B. Xing, and P. M. Huang (Wiley, New Jersey, 2009), pp. 589–650. doi 10.1002/9780470494950.ch15

    Chapter  Google Scholar 

  112. A. J. Simpson, M. J. Simpson, and R. Soong, “Nuclear magnetic resonance spectroscopy and its key role in environmental research,” Environ. Sci. Technol. 46 (21), 11488–11496 (2012). doi 10.1021/es302154w

    Article  Google Scholar 

  113. M. J. Simpson and A. J. Simpson, “NMR of soil organic matter,” in Encyclopedia of Spectroscopy and Spectrometry (Elsevier, Amsterdam, 2017), pp. 170–174. doi 10.1016/B978-0-12-409547-2.12169-9

    Chapter  Google Scholar 

  114. R. J. Smernik, “Solid-state 13C NMR spectroscopic studies of soil organic matter at two magnetic field strengths,” Geoderma 125, 249–271 (2005). doi 10.1016/j.geoderma.2004.08.003

    Article  Google Scholar 

  115. R. J. Smernik and J. M. Oades, “Solid-state 13C-NMR dipolar dephasing experiments for quantifying protonated and non-protonated carbon in soil organic matter and model systems,” Eur. J. Soil Sci. 52, 103–120 (2001). doi 10.1046/j.1365-2389.2001.00364.x

    Article  Google Scholar 

  116. R. J. Smernik and J. M. Oades, “Spin accounting and RESTORE—two new methods to improve quantitation in solid-state 13C-NMR analysis of soil organic matter,” Eur. J. Soil Sci. 54, 103–116 (2003). doi 10.1046/j.1365-2389.2003.00497.x

    Article  Google Scholar 

  117. R. J. Smernik, L. Schwark, and M. W. I. Schmidt, “Assessing the quantitative reliability of solid-state 13C NMR spectra of kerogens across a gradient of thermal,” Solid State Nucl. Magn. Reson. 29, 312–321 (2006). doi 10.1016/j.ssnmr.2005.10.014

    Article  Google Scholar 

  118. F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions (Wiley, New York, 1994).

    Google Scholar 

  119. R. S. Swift, “Organic matter characterization,” in Methods of Soil Analysis, Part 3: Chemical Methods, Ed. by D. L. Sparks, (Soil Science Society of America, Madison, 1996), pp. 1018–1020.

    Google Scholar 

  120. A. M. Tadini, G. Pantano, A. L. Toffoli, B. Fontaine, R. Spaccini, A. Piccolo, A. B. Moreira, and M. C. Bisinoti, “Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses,” Sci. Total Environ. 506–507, 234–240 (2015). doi 10.1016/j.scitotenv.2014.11.012

    Article  Google Scholar 

  121. R. Vasilevich, E. Lodygin, V. Beznosikov, and E. Abakumov, “Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers,” Sci. Total Environ. 615, 1229–1238 (2018). doi 10.1016/j.scitotenv.2017.10.053

    Article  Google Scholar 

  122. F. J. Gonzalez Vila and H. Lentz, “FT-C13 nuclear magnetic resonance spectra of natural humic substance,” Biochem. Biophys. Res. Commun. 72 (3), 1063–1070 (1976). doi 10.1016/S0006-291X(76)80240-9

    Article  Google Scholar 

  123. R. L. Wershaw, J. A. Leenheer, K. R. Kennedy, and T. I. Noyes, “Use of 13C NMR and FTIR for elucidation of degradation pathways during natural litter decomposition and composting. I. Early stage leaf degradation,” Soil Sci. 161, 667–679 (1996).

    Article  Google Scholar 

  124. M. A. Wilson, “Application of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter,” Eur. J. Soil Sci. 32 (2), 167–186 (1981). doi 10.1111/j.1365-2389.1981.tb01698.x

    Article  Google Scholar 

  125. M. A. Wilson, NMR Techniques and Applications in Geochemistry and Soil Chemistry (Pergamon, Oxford, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Chukov.

Additional information

Original Russian Text © S.N. Chukov, E.D. Lodygin, E.V. Abakumov, 2018, published in Pochvovedenie, 2018, No. 8, pp. 952–964.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chukov, S.N., Lodygin, E.D. & Abakumov, E.V. Application of 13C NMR Spectroscopy to the Study of Soil Organic Matter: A Review of Publications. Eurasian Soil Sc. 51, 889–900 (2018). https://doi.org/10.1134/S1064229318080021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318080021

Keywords

Navigation