Skip to main content
Log in

Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp.

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Two biphenyl-degrading bacterial strains, SS1 and SS2, were isolated from polychlorinated biphenyl (PCB)-contaminated soil. They were identified as Rhodococcus ruber and Rhodococcus pyridinivorans based on the 16S rRNA gene sequence, as well as morphological, physiological and biochemical characteristics. SS1 and SS2 exhibited tolerance to 2000 and 3000 mg/L of biphenyl. And they could degrade 83.2 and 71.5% of 1300 mg/L biphenyl within 84 h, respectively. In the case of low-chlorinated PCB congeners, benzoate and 3-chlorobenzoate, the degradation activities of SS1 and SS2 were also significant. In addition, these two strains exhibited chemotactic response toward TCA-cycle intermediates, benzoate, biphenyl and 2-chlorobenzoate. This study indicated that, like the flagellated bacteria, non-flagellated Rhodococcus spp. might actively seek substrates through the process of chemotaxis once the substrates are depleted in their surroundings. Together, these data provide supporting evidence that SS1 and SS2 might be good candidates for restoring biphenyl/PCB-polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253

    Article  CAS  PubMed  Google Scholar 

  • Adebusoye SA, Picardal FW, Ilori MO, Amund OO (2008a) Influence of chlorobenzoic acids on the growth and degradation potentials of PCB-degrading microorganisms. World J Microb Biotechnol 24:1203–1208

    Article  CAS  Google Scholar 

  • Adebusoye SA, Ilori MO, Picardal FW, Amund OO (2008b) Cometabolic degradation of polychlorinated biphenyls (PCBs) by axenic cultures of Ralstonia sp. strain SA-5 and Pseudomonas sp. strain SA-6 obtained from Nigerian contaminated soils. World J Microb Biotechnol 24:61–68

    Article  CAS  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  PubMed  PubMed Central  Google Scholar 

  • Aoki Y (2001) Polychlorinated biphenyls, polychloronated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters: what we have learned from Yusho disease. Environ Res 86:2–11

    Article  CAS  PubMed  Google Scholar 

  • Atago Y, Shimodaira J, Araki N, Bin Othman N, Zakaria Z, Fukuda M, Futami J, Hara H (2016) Identification of novel extracellular protein for PCB/biphenyl metabolism in Rhodococcus jostii RHA1. Biosci Biotechnol Biochem 80:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Bartels F, Backhaus S, Moore E, Timmis KN, Hofer B (1999) Occurrence and expression of glutathiane-S-transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. Microbiol-SGM 145:2821–2834

    Article  CAS  Google Scholar 

  • Bedard DL, Haberl ML (1990) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb Ecol 20:87–102

    Article  CAS  PubMed  Google Scholar 

  • Bopp LH (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol Biotechnol 47:247–254

    Google Scholar 

  • Camara B, Herrera C, Gonzalez M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850

    Article  CAS  PubMed  Google Scholar 

  • Chung SY, Maeda M, Song E, Horikoshij K, Kudo T (1994) A gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain TA421, isolated from a termite ecosystem. Biosci Biotechnol Biochem 58:2111–2113

    Article  CAS  Google Scholar 

  • Eklund T (1985) Inhibition of microbial growth at different pH levels by benzoic and propionic acids and esters of p-hydroxybenzoic acid. Int J Food Microbiol 2:159–167

    Article  CAS  Google Scholar 

  • Faroon O, Jones D, Rosa CD (2000) Effects of polychlorinated biphenyls on the nervous system. Toxicol Ind Health 16:305–333

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Tomizuka N, Kamibayashi A (1979) Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl Environ Microbiol 38:301–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordillo F, Chavez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328

    Article  CAS  PubMed  Google Scholar 

  • Harwood CS (1989) A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. J Bacteriol 171:4603–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood CS, Parales RE, Dispensa M (1990) Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl Environ Microbiol 56:1501–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington E (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Q, Dong XJ, He LJ, Jiang X, Li SP (2009) Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster. Int Biodeterior Biodegrad 63:365–370

    Article  CAS  Google Scholar 

  • Hu JX, Qian MR, Zhang Q, Cui JL, Yu CN, Su XM, Shen CF, Hashmi MZ, Shi JY (2015) Sphingobium fuliginis HC3: a novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation. PLoS ONE 10:e122740. doi:10.1371/journal.pone.0122740

    Google Scholar 

  • Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476

    Article  CAS  PubMed  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Kohler HP, Kohler-Staub D, Focht DD (1988) Co-metabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl Environ Microbiol 54:1940–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krell T, Lacal J, Reyes-Darias JA, Jimenez-Sanchez C, Sungthong R, Ortega-Calvo JJ (2013) Bioavailability of pollutants and chemotaxis. Curr Opin Microbiol 24:451–456

    CAS  Google Scholar 

  • Labbe D, Garnon J, Lau P (1997) Characterization of the genes encoding a receptor-like histidine kinase and a cognate response regulator from a biphenyl/polychlorobiphenyl-degrading bacterium, Rhodococcus sp. strain M5. J Bacteriol 179:2772–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law A, Aitken MD (2003) Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 69:5968–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Qu YY, Zhou JT, Gou M (2009) Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4. J Environ Sci (China) 21:211–217

    Article  CAS  Google Scholar 

  • Marx RB, Aitken MD (1999) Quantification of chemotaxis to naphthalene by Pseudomonas putida G7. Appl Environ Microbiol 65:2847–2852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marx RB, Aitken MD (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34:3379–3383

    Article  CAS  Google Scholar 

  • McKay DB, Prucha M, Reineke W, Timmis KN, Pieper DH (2003) Substrate specificity and expression of three 2,3-dihydroxybiphenyl 1,2-dioxygenases from Rhodococcus globerulus strain P6. J Bacteriol 185:2944–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody JD, Doerge DR, Freeman JP (2002) Degradation of biphenyl by Mycobacterium sp. strain PYR-1. Appl Microbiol Biotechnol 58:364–369

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo Y, Kudo T, Tsuda M, Nagata Y (2004) Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biotechnol 65:250–258

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey G, Chauhan A, Samanta SK, Jain RK (2002) Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem Biophys Res Commun 299:404–409

    Article  CAS  PubMed  Google Scholar 

  • Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273

    Article  CAS  PubMed  Google Scholar 

  • Parales RE, Luu RA, Hughes JG, Ditty JL (2015) Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs. Curr Opin Biotechnol 33:318–326

    Article  CAS  PubMed  Google Scholar 

  • Parnell JJ, Park J, Denef V, Tsoi T, Hashsham S, Quensen J, Tiedje JM (2006) Coping with polychlorinated biphenyl (PCB) toxicity: physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 72:6607–6614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ Microbiol 8:1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

    Article  CAS  PubMed  Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138

    Article  CAS  PubMed  Google Scholar 

  • Potrawfke T, Lohnert TH, Timmis KN, Wittich RM (1998) Mineralization of low-chlorinated biphenyls by Burkholderia sp. strain LB400 and by a two membered consortium upon directed interspecies transfer of chlorocatechol pathway genes. Appl Microbiol Biotechnol 50:440–446

    Article  CAS  Google Scholar 

  • Sakai M, Ezaki S, Suzuki N, Kurane R (2005) Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Appl Microbiol Biotechnol 68:111–116

    Article  CAS  PubMed  Google Scholar 

  • Stratford J, Wright MA, Reineke W, Mokross H, Havel J, Knowles CJ, Robinson GK (1996) Influence of chlorobenzoates on the utilization of chlorobiphenyls and chlorobenzoates mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains. Arch Microbiol 165:213–218

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Motoyama M, Kudo T (2004) Multiplicity of 2,3-dihydroxybiphenyl dioxygenase genes in the Gram-positive polychlorinated biphenyl degrading bacterium Rhodococcus rhodochrous K37. Biosci Biotechnol Biochem 68:787–795

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Motoyama M, Iida T, Kudo T (2007) Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of Rhodococci. Biosci Biotechnol Biochem 71:1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Tanase A, Vassu T, Csutak O, Pelinescu D, Robertina I, Stoica I (2012) Phylogenetic analysis of oil polluted soil microbial strains. Rom Biotechnol Lett 17:7093–7103

    CAS  Google Scholar 

  • Toussaint JP, Pham TTM, Barriault D, Sylvestre M (2012) Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biot 95:1589–1603

    Article  CAS  Google Scholar 

  • Tremaroli V, Suzzi CV, Fedi S, Ceri H, Zannoni D, Turner RJ (2010) Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiol Ecol 74:291–301

    Article  CAS  PubMed  Google Scholar 

  • Vasilyeva GK, Strijakova ER (2007) Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology 76:639–653

    Article  CAS  Google Scholar 

  • Wu G, Feng Y, Boyd A (2003) Characterization of bacteria capable of degrading soil-sorbed biphenyl. Bull Environ Contam Toxicol 71:768–775

    Article  CAS  PubMed  Google Scholar 

  • Yang XQ, Erickson LE, Fan LT (1995) A study of the dissolution rate-limited bioremediation of soils contaminated by residual hydrocarbons. J Hazard Mater 41:299–313

    Article  CAS  Google Scholar 

  • Yang X, Sun Y, Qian S (2004) Biodegradation of seven polychlorinated biphenyls by a newly isolated aerobic bacterium (Rhodococcus sp. R04). J Ind Microbiol Biotechnol 31:415–420

    Article  CAS  PubMed  Google Scholar 

  • Yun Q, Lin Z, Xin T (2009) Cometabolism and immobilized degradation of monochlorobenzoate by Rhodococcus erythropolis. Afr J Microbiol Res 3:482–486

    CAS  Google Scholar 

  • Zhang GQ, Yang XQ, Xie FH, Chao YP, Qian SJ (2009) Cometabolic degradation of mono-chloro benzoic acids by Rhodococcus sp. R04 grown on organic carbon sources. World J Microb Biotechnol 25:1169–1174

    Article  CAS  Google Scholar 

  • Zhao HP, Schmidt KR, Tiehm A (2010) Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenes. Water Res 44:2276–2282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the Fundamental Research Funds for the Central Universities (2016QNA6009) and the Provincial Public Technology and Applied Research Projects by Science and Technology Department of Zhejiang Province (2014C33020, 2017C33020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hu, J., Xu, K. et al. Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp.. Biodegradation 29, 1–10 (2018). https://doi.org/10.1007/s10532-017-9809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-017-9809-6

Keywords

Navigation