Skip to main content
Log in

Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial dehalogenation of tetrachloroethene (PCE) and cis-dichloroethene (cis-DCE) was studied in cultures from a continuous stirred tank reactor initially inoculated with aquifer material from a PCE-contaminated site. Cultures amended with hydrogen and acetate readily dechlorinated PCE and cis-DCE; however, this transformation was incomplete and resulted in the accumulation of chlorinated intermediates and only small amounts of ethene within 60 days of incubation. Conversely, microbial PCE and cis-DCE dechlorination in cultures with benzoate and acetate resulted in the complete transformation to ethene within 30 days. Community fingerprinting by denaturing gradient gel electrophoresis (DGGE) revealed the predominance of phylotypes closely affiliated with Desulfitobacterium, Dehalococcoides, and Syntrophus species. The Dehalococcoides culture VZ, obtained from small whitish colonies in cis-DCE dechlorinating agarose cultures, revealed an irregular cell diameter between 200 and 500 nm, and a spherical or biconcave disk-shaped morphology. These organisms were identified as responsible for the dechlorination of cis-DCE to ethene in the PCE-dechlorinating consortia, operating together with the Desulfitobacterium as PCE-to-cis-DCE dehalogenating bacterium and with a Syntrophus species as potential hydrogen-producing partner in cultures with benzoate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian L, Szewzyk U, Wecke J, Görisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583

    CAS  PubMed  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballerstedt H, Hantke J, Bunge M, Werner B, Gerritse J, Andreesen J, Lechner U (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol Ecol 47:223–234

    CAS  PubMed  Google Scholar 

  • Becker JG, Berardesco G, Rittmann BE, Stahl DA (2001) Successional changes in an evolving anaerobic chlorophenol-degrading community used to infer relationships between population structure and system-level processes. Appl Environ Microbiol 67:5705–5714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JG, Berardesco G, Rittmann BE, Stahl DA (2005) The role of syntrophic associations in sustaining anaerobic mineralization of chlorinated organic compounds. Environ Health Perspect 113:310–316

    CAS  PubMed  Google Scholar 

  • Beeman RE, Howell JE, Shoemaker SH, Salazar EA, Buttram JR (1994) A field evaluation of in situ microbial reductive dehalogenation by the biotransformation of chlorinated ethenes. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds) Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Lewis Publishers, Boca Raton, FL, pp 14–27

    Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    CAS  PubMed  Google Scholar 

  • Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421:357–360

    CAS  PubMed  Google Scholar 

  • Bürgmann H, Meier S, Bunge M, Widmer F, Zeyer J (2005) Effects of model root exudates on structure and activity of a soil diazotroph community. Environ Microbiol 7:1711–1724

    PubMed  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002a) Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. Appl Environ Microbiol 68:2726–2730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002b) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL (2003) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolfing J, Tiedje J (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol Ecol 38:293–298

    CAS  Google Scholar 

  • Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fennell D, Gossett J (1998) Modeling the production of and competition for hydrogen in a dechlorinating culture. Environ Sci Technol 32:2450–2460

    CAS  Google Scholar 

  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081

    CAS  PubMed  Google Scholar 

  • Gossett J (1987) Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environ Sci Technol 21:202–208

    CAS  Google Scholar 

  • He J, Ritalahti K, Yang K, Koenigsberg S, Löffler F (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    CAS  PubMed  Google Scholar 

  • He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450

    CAS  PubMed  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaksonen AH, Plumb JJ, Robertson WJ, Franzmann PD, Gibson JAE, Puhakka JA (2004) Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactors treating acidic, metal-containing wastewater. Geomicrobiol J 21:469–480

    CAS  Google Scholar 

  • Kuesel K, Karnholz A, Trinkwalter T, Devereux R, Acker G, Drake HL (2001) Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67:4734–4741

    Google Scholar 

  • Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 64:2463–2472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lendvay J, Löffler F, Dollhopf M, Aiello M, Daniels G, Fathepure B, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major C, Barcelona M, Petrovskis E, Hickey R, Tiedje J, Adriaens P (2003) Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431

    CAS  Google Scholar 

  • Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056

    PubMed  PubMed Central  Google Scholar 

  • Löffler FE, Sun Q, Li J, Tiedje JM (2000) 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374

    PubMed  PubMed Central  Google Scholar 

  • Löffler FE, Cole JR, Ritalahti KM, Tiedje JM (2003) Diversity of dechlorinating bacteria. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer, Boston, pp 53–87

    Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116

    CAS  PubMed  Google Scholar 

  • Maymo-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    CAS  PubMed  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    PubMed  PubMed Central  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2004) Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms. In: Kowalchuk G, de Bruijn F, Head I, Akkermans A, van Elsas J (eds) Molecular microbial ecology manual, 2nd edn. Kluwer, Dordrecht, pp 711–725

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz-Muramatsu H, Szewzyk R, Szewzyk U, Gaiser S (1990) Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate. FEMS Microbiol Lett 66:81–86

    CAS  Google Scholar 

  • Sung Y, Ritalahti KM, Apkarian RP, Löffler FE (2006) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallrabenstein C, Gorny N, Springer N, Ludwig W, Schink B (1995) Pure culture of Syntrophus buswellii, definition of its phylogenetic status, and description of Syntrophus gentianae sp. nov. Syst Appl Microbiol 18:62–66

    CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, McCarty P (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597

    CAS  Google Scholar 

  • Yang Y, McCarty P (2000) Biologically enhanced dissolution of tetrachloroethene DNAPL. Environ Sci Technol 34:2979–2984

    CAS  Google Scholar 

  • Yang Y, Zeyer J (2003) Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 69:2879–2883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Pesaro M, Sigler W, Zeyer J (2005) Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community. Water Res 39:3954–3966

    CAS  PubMed  Google Scholar 

  • Zarda B, Hahn D, Chatzinotas A, Schönhuber W, Neef A, Amann RI, Zeyer J (1997) Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch Microbiol 168:185–192

    CAS  Google Scholar 

  • Zinder SH, Dworkin M (2006) Morphological and physiological diversity. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, 3rd edn. Springer, New York, pp 185–220

    Google Scholar 

Download references

Acknowledgments

We thank Ivonne Nijenhuis for providing a pure culture of Dehalococcoides ethenogenes 195, the Alfred Spormann group for providing a culture containing strain VS, and the group of Rudi Amann, with special thanks to Jörg Wulf, for introducing us to the CARD FISH method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bunge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunge, M., Kleikemper, J., Miniaci, C. et al. Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer. Appl Microbiol Biotechnol 76, 1447–1456 (2007). https://doi.org/10.1007/s00253-007-1097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1097-3

Keywords

Navigation