Skip to main content
Log in

Key determinants affecting sheep wool biodegradation directed by a keratinase-producing Bacillus subtilis recombinant strain

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

OVAT (one variable at a time) approach was applied in this study to screen the most important physicochemical key determinants involved in the process of sheep wool biodegradation. The process was directed by a keratinase-producing Bacillus subtilis DB 100 (p5.2) recombinant strain. Data indicate that, sheep wool could be degraded efficiently in cultures incubated at 30°C, with initial pH of 7 with agitation at 150 rpm. Two times autoclaved alkali treated and undefatted chopped sheep wool is more accessible to biodegradation. B. subtilis recombinant cells could utilize sheep wool as a sole source of carbon and nitrogen. Sheep wool-based modified basal medium II, lacking NH4Cl and yeast extract, could greatly support the growth of these bacterial cells. Sheep wool biodegradation was conducted efficiently in the absence of kanamycin consequently; high stability of the recombinant plasmid (p5.2) represents a great challenge upon scaling up this process. Three key determinants (sheep wool concentration, incubation time and inoculum size) imposing considerable constraints on the process are highlighted. Sheep wool-based tap water medium and sheep wool-based distilled water medium were formulated in this study. High levels of released end products, produced from sheep wool biodegradation are achieved upon using these two sheep wool-based water media. Data indicate that, sheep wool hydrolysate is rich in some amino acids, such as tyrosine, phenylalanine, lysine, proline, isoleucine, leucine, valine, aspartic acid and glutamic acid. Moreover, the resulting sheep wool hydrolysate contains soluble proteins of high and intermediate molecular weights. The present study demonstrates a feasible, cheap, reproducible, efficient and rapid biotechnological approach towards utilization of raw sheep wool waste through a recombinant bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anbu P, Gopinatha SCB, Hilda A, Lakshmi PL, Annaduraic G (2005) Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme Microb Technol 369:639–647

    Article  Google Scholar 

  • Balint B, Zottan B, Toth A, Rakhey G, Perei K, Kovacs KL (2005) Utilization of keratin containing biowastes to produce hydrogen. Appl Microbiol Biotechnol 69:404–410

    Article  CAS  PubMed  Google Scholar 

  • Bernal C, Diaz I, Coello N (2006) Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria rosea. Can J Microbiol 52:445–450

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt K, Schrempf H, Goebel W (1978) Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. J Bacteriol 133:897–903

    Google Scholar 

  • Böckle B, Galunsky B, Müller R (1995) Characterization of keratinolytic serine protease from Streptomyces pactum DSM 40530. Appl Environ Microbiol 61:3705–3710

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindings. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brandelli A, Riffel A (2005) Production of an extracellular keratinase from Chyrseobacterium sp. growing on raw feathers. Electron J Biotechnol 8(1):35–42

    Article  CAS  Google Scholar 

  • Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85(6):1735–1750

    Article  CAS  PubMed  Google Scholar 

  • Bressollier P, Letourneau F, Urdaei M, Verneuil B (1999) Purification and characterization of keratinolytic serine proetaese from Streptomyces albiodflavus. Appl Environ Microbiol 65:2570–2576

    CAS  PubMed  Google Scholar 

  • Cai C-g, Lou B-g, Zheng X-d (2008) Keratinase production and keratinase degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B 9(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Cao ZJ, Zhang Q, Wei DK, Chen L, Wang XQ, Zhou MH (2009) Characterization of a novel Stenotrophomomnas isolate with high keratinase activity and purification of the enzyme. J Ind Microbiol Biotechnol 36(2):181–188

    Article  CAS  PubMed  Google Scholar 

  • Carolin G, Kerstin S, Stan JJB, Leon DK, John van der O, Willem Mde Vos, Garabed A (2005) Cloning and expression of islandicum, a novel thermostable subtilisin from Fervidobacterium islandicum, in E.coli.71. Appl Environ Microbiol 71(7):3951–3958

    Google Scholar 

  • Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 177(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • De Azeredo LAI, De Lin MB, Coelho RR, Freire DMG (2006) Thermophilic protease production by Streptomyces sp. 594. In submerged and solid state fermentation using feather meal. J Appl Microbiol 100:641–647

    Article  PubMed  Google Scholar 

  • Deivasigamani B, Alagappan KM (2008) Industrial application of keratinase and soluble proteins from feather keratins. J Environ Biol 29(6):933–936

    CAS  PubMed  Google Scholar 

  • Elibol M, Moreira AR (2005) Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turniae under solid state fermentation. Process Biochem 409:1951–1956

    Article  Google Scholar 

  • El-Refai HA, AbdelNaby MA, Gaballa A, El-Araby MH, Abdel Fattah AF (2005) Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem 40:2325–2332

    Article  CAS  Google Scholar 

  • Evans KL, Crowder J, Miller ES (2000) Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can J Microbiol 46:1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Fakhfakh N, Kanoun S, Manni L, Nasri M (2009) Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading Bacillus licheniformis RPk. Can J Microbiol 55:427–436

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497

    CAS  PubMed  Google Scholar 

  • Friedrich NB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order thermotogales. Appl Environ Microbiol 62(8):2875–2882

    CAS  PubMed  Google Scholar 

  • Genckal H, Tari C (2006) Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb Technol 39:703–710

    Article  CAS  Google Scholar 

  • Gessesse A, Hatti-Kaul R, Berhanu A, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkalophilic bacteria grown on chicken feather. Enzyme Microb Technol 329:519–524

    Article  Google Scholar 

  • Gokhade DV, Patil SG, Batawde KB (1991) Optimization of cellulose production by Aspergillus niger NCIM. Appl Biochem Biotechnol 30(2):99–109

    Article  Google Scholar 

  • Gousterova A, Braikova D, Geshov I, Christov P, Tishinov K, Tonkova TE, Haertle T, Nedkov P (2005) Degradation of keratin and collagen wastes by newly isolated Thermoactinomycetes or by alkaline hydrolysis. Lett Appl Microbiol 40:335–340

    Article  CAS  PubMed  Google Scholar 

  • Gradisar H, Friedrich J (2000) Keratinase of Doratomyces microspous. Appl Microbiol Biotechnol 53:196–200

    Article  CAS  PubMed  Google Scholar 

  • Gradisar H, Freiedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some new known proteases. Appl Environ Microbiol 71(7):3420–3426

    Article  CAS  PubMed  Google Scholar 

  • Grazziotin A, Pimentel FA, Sangali S, de Jong EV, Brandelli A (2007) Production of feather protein hydrolysate by keratinolytic bacterium Vibrio sp. Kr2. Bioresour Technol 98:3172–3175

    Article  CAS  PubMed  Google Scholar 

  • Greasham RL (1983) Biotechnology. In: Rehm HJ, read G, Puhler A, Stagler P (eds) Bioprocessing. VCH publishers, New York, USA, pp 128–139

    Google Scholar 

  • Gupta R, Rammani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    Article  CAS  PubMed  Google Scholar 

  • Hossain MS, Azad AK, Abu Sayem SM, Mostafa G, Hoq MM (2007) Production and partial characterization of feather-degrading keratinolytic serine protease from Bacillus licheniformis MZK-3. J Biol Sci 7(4):599–606

    Article  CAS  Google Scholar 

  • Hutchinson S, Evans D, Carion G, Kattenbett J (2007) An evaluation of the action of thioestrases on the surface of wool. Enzyme Microb Tehcnol 40:1794–1800

    Article  CAS  Google Scholar 

  • Ignatova Z, Gousterova G, Spassov G, Nedkov P (1999) Isolation and partial characterization of extracellular keratinase from a wool degrading thermophlic actinomycete strain Thermoactinomycetes candidus. Can J Microbiol 45:217–222

    Article  CAS  PubMed  Google Scholar 

  • Ionata E, Cangangella F, Bionconi G, Benna Y, Sakamoto M, Capsaao A, Rossi M, La Cara F (2008) A novel keratinase from Clostridium sporogenes bv. Pennavorans bv. Nov., a thermotolerant organism isolated from solfataric muds. Microbiol Res 163:105–112

    Article  CAS  PubMed  Google Scholar 

  • Khardenavis AA, Kapley A, Purohit HJ (2009) Processing of poultry feathers by alkaline keratin-hydrolyzing enzymes from Serratia sp. HPC1383. Waste Manag 29:1409–1415

    Article  CAS  PubMed  Google Scholar 

  • Kluskens LD, Voorhorst WG, Siezen RJ, Schwerdtfeger RM, Antranikian G, van der Oost J, de Vos WM (2002) Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennavorans. Extermophiles 6:185–194

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of the structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lahl WJ, Braun SD (1994) Enzymatic production of protein hydrolysates for food use. Food Technol 48:68–71

    CAS  Google Scholar 

  • Lin X, Kelemen DW, Miller ES, Shih JCH (1995) Nucleotide sequence and expression of ker A, the gene encoding for a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol 61:1469–1474

    CAS  PubMed  Google Scholar 

  • Lin HH, Yin LJ, Jiang ST (2009a) Cloning, expression and purification of Pseudomonas aeruginosa keratinase in Escherichia coli AD949 (DE3) pLys S expression system. J Agric Food Chem 57(9):3506–3511

    Article  CAS  PubMed  Google Scholar 

  • Lin HH, Yin LJ, Jiang ST (2009b) Expression and purification of Pseudomonas aeruginosa keratinase in Bacillus subtilis DB104 expression system. J Agric Food Chem 57(17):7779–7784

    Article  CAS  PubMed  Google Scholar 

  • Mazotto AM, Cedrola SM, Lins U, Rosado AS, Silva KT, Chares JQ, Rabinovitch L, Zingali RB, Vermelho AB (2010) Keratinolytic activity of Bacillus subtilis AMR using human hair. Lett Appl Microbial 50(1):89–96

    Article  CAS  Google Scholar 

  • McNeil SJ, Sunderland MR, Zaitseva LI (2007) Closed-looped wool carpet recycling. Res Conserv Recycl 51:220–224

    Article  Google Scholar 

  • Mitsuiki S, Sakai M, Moriyam Y, Goto M, Furukawa K (2002) Purification and some properties of a keratinolytic enzyme from an alkaophilic Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 66(1):164–167

    Article  CAS  PubMed  Google Scholar 

  • Mitsuiki S, Ichikawa M, Oka T, Sakai M, Moriyama Y, Sameshima Y, Goto M, Furukawa K (2004) Molecular characterization of a keratinolytic enzyme from an alkalophilc Nocardiopsis sp.TOA-1. Enzyme Microb Technol 34:482–489

    Article  CAS  Google Scholar 

  • Moran J, Summers JD, Slinger SJ (1996) Amino acid imbalance as the cause of inferior performance of feather meal and the implication of disulfide bonding in raw feathers as the reason for poor digestibility. Poult Sci 45:1257–1266

    Google Scholar 

  • Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels. A modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310

    Article  CAS  PubMed  Google Scholar 

  • Mortiz JS, Latshaw JD (2001) Indicators of nutritional value of hydrolyzed feather meal. Poult Sci 80:79–86

    Google Scholar 

  • Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA, Hwang JK, Suhartono MT, Pyum YR (2002) Native- feather degradation by Fervidobacterium islandicum Aw-1, a newly isolated keratinase producing thermophilic anaerobe. Arch Microbiol 178(6):538–544

    Article  CAS  PubMed  Google Scholar 

  • Odetallah NH, Wang JJ, Garlich JD, Shih JCH (2003) Keratinase in starter diets improves growth of broilers chicks. Poult Sci 82:1–7

    Google Scholar 

  • Onifade AA, Al-Sane NA, Al-Mussalam AA, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Biores Technol 66:1–11

    Article  CAS  Google Scholar 

  • Oulad Haddar H, Zaghloul TI, Saeed HM (2009) Biodegradation of native feather keratin by Bacillus subtilis recombinant strains. Biodegradation 20:687–694

    Article  Google Scholar 

  • Ozeki H, Ito S, Wakamatsu K (2007) Chemical characterization of melanin in sheep wool. Pigment Cell Res 9(2):51–57

    Article  Google Scholar 

  • Papadopoulos MC, El Boushy AR, Roodbeen AE, Ketelaars EH (1986) Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal. Anim Feed Sci Technol 14:279–290

    Article  Google Scholar 

  • Pearce KN, Karahalios D, Friedman M (1988) Ninhydrin assay for proteolysis in ripening cheese. J Food Sci 53(2):432–435

    Article  CAS  Google Scholar 

  • Pelczar MJ, Chan EC (1977) Laboratory exercises in microbiology, 4th edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Puri S, Beg QK, Gupta R (2002) Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol 44:286–290

    Article  CAS  PubMed  Google Scholar 

  • Radha S, Gunasekaran P (2008) Sustained expression of keratinase gene under PxylA and Pamyl promoters in the recombinant Bacillus megaterium MS 941. Biores Technol 99:5528–5537

    Article  CAS  Google Scholar 

  • Ramnani P, Gupta R (2004) Optimization of medium composition for keratinase production from feather by Bacillus licheniformis RG1 using statistical methods involved response surface methodology. Biotechnol Appl Biochem 40:191–196

    Article  CAS  PubMed  Google Scholar 

  • Ramnani P, Singh R, Gupta R (2005) Keratinolytic potentials of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51:191–196

    Article  CAS  PubMed  Google Scholar 

  • Riessen S, Antranikian G (2001) Isolation of Thermoanerobacter keratinophilus sp. Nov, a novel thermophilic anaerobic bacterium with keratinolytic activity. Extremophiles 5:399–408

    Article  CAS  PubMed  Google Scholar 

  • Riffel A, Brandelli A (2002) Isolation and characterization of a feather degrading bacterium from the poultry processing industry. J Ind Microbiol Biotechnol 29:255–258

    Article  CAS  PubMed  Google Scholar 

  • Riffel A, Bandelli A, Bellato C de MB, Souza GHMFS, Eberlin MN, Marcos NE, Tavares FCA (2007) Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J Biotechnol 128:693–703

  • Sangali S, Brandelli A (2000a) Isolation and characterization of a novel feather-degrading bacterial strain. Appl Biochem Biotechnol 87:17–24

    Article  CAS  PubMed  Google Scholar 

  • Sangali S, Brandelli A (2000b) Feather hydrolysis of a Vibrio sp. strain kr2. J Appl Microbiol 89:735–743

    Article  CAS  PubMed  Google Scholar 

  • Shih JCH (1993) Recent development in poultry waste digestion and feather utilization—a review. Poult Sci 72:1617–1620

    Google Scholar 

  • Sousa F, Jus S, Erbel A, Kokol V, Cavco-Paulo A, Gubitz GM (2007) A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme Microb Technol 40:1772–1781

    Article  CAS  Google Scholar 

  • Speckman DH, Stein WH, Moore S (1958) Automatic ecording apparatus for use in the chromatography of amino acids. Anal Chem 30:1190–1205

    Article  Google Scholar 

  • Suntornsuk W, Tongjun J, Onnim P, Oyama H, Ratanakanokchai K, Kusamran T, Oda K (2005) Purification and characterization of keratinase from a thermotolerant feather-degrading bacterium. World J Microbial Biotechnol 21:1111–1117

    Article  CAS  Google Scholar 

  • Suzuki Y, Tsujimoto Y, Matsu H, Watanabe K (2006) Decomposition of extremely hard to degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102(2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Syed DG, Lee JC, Li WJ, Kim CJ, Agasar D (2009) Production, characterization and application of keratinase from Streptomyces gulbargensis. Biores Technol 100:1868–1871

    Article  CAS  Google Scholar 

  • Vasileva-Tonkova E, Nustorova M, Gushterova A (2007) New protein hydrolysates from collagen wastes used as peptone as bacterial growth. Curr Microbiol 54:54–57

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Parson CM (1997) Effects of processing systems on protein quality of feather meal and hog hair meals. Poult Sci 76:491–496

    CAS  PubMed  Google Scholar 

  • Williams CM, Richter CS, MacKenzie JM, Shih JCH (1990) Isolation, identification, and characterization of a feather degrading bacterium. Appl Environ Microbiol 56:1509–1515

    CAS  PubMed  Google Scholar 

  • Williams CM, Lee CG, Garlich JD, Shih JCH (1991) Evaluation of a bacterial feather fermentation product, feather hydrolysate, as a feed protein. Poult Sci 70:85–94

    CAS  Google Scholar 

  • Xie F, Chao Y, yang X, Yang J, Zue Z, Luo Y, Qian S (2010) Purification and characterization of four keratinases produced by Streptomyces sp. strain 16. in native human foot skin medium. Biores Technol 101(1):344–350

    Article  Google Scholar 

  • Zaghloul TI (1998) Cloned Bacillus subtilis protease (aprA) gene showing high level of keratinolytic activity. Appl Biochem Bioetchnol 70–72:199–205

    Article  Google Scholar 

  • Zaghloul TI, Abdelaziz A, Mostafa MH (1994) High level of expression and stability of the cloned alkaline protease (aprA) gene in Bacillus subtilis. Enzyme Microb Technol 16:534–537

    Article  CAS  PubMed  Google Scholar 

  • Zaghloul TI, Al-Bahra M, Al-Azmeh H (1998) Isolation, identification and keratinolytic activity of several feather degrading bacterial isolates. Appl Biochem Biotechnol 70–72:207–213

    Article  Google Scholar 

  • Zaghloul TI, Haroun MA, El-Gayar K, Abdelal A (2004) Degradation of chicken feather waste through a Bacillus subtilis recombinant strain. Polym Plast Trend Eng 43(6):1589–1599

    Article  CAS  Google Scholar 

  • Zheljazkov VD (2005) Assessment of wool waste and hair waste as soil amendment and nutrient source. J Environ Qual 34:2310–2317

    Article  CAS  PubMed  Google Scholar 

  • Zheljazkov VD, Stratton GW, Pincock J, Butler S, Jeliazkova EA, Nedkov NK, Gerard PD (2009) Wool waste as organic nutrient source for container-grown plants. Waste Manag 29(7):2160–2164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Chemist/Heba-Allah S. Marey, Assistant lecturer of the Institute of Graduate Studies and Research (IGSR), Environmental Studies Department, Alexandria University, Egypt for her help concerning data analysis. The authors are also very grateful to the Scientific Academy for Research and Technology for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taha I. Zaghloul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaghloul, T.I., Embaby, A.M. & Elmahdy, A.R. Key determinants affecting sheep wool biodegradation directed by a keratinase-producing Bacillus subtilis recombinant strain. Biodegradation 22, 111–128 (2011). https://doi.org/10.1007/s10532-010-9381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9381-9

Keywords

Navigation