Skip to main content
Log in

Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In this study, we isolated and characterized a novel feather-degrading bacterium that shows keratinolytic, antifungal and plant growth-promoting activities. A bacterium S8 was isolated from forest soil and confirmed to belong to Bacillus subtilis by BIOLOG system and 16S rRNA gene analysis. The improved culture conditions for the production of keratinolytic protease were 0.1% (w/v) sorbitol, 0.3% (w/v) KNO3, 0.1% (w/v) K2HPO4, 0.06% (w/v) KH2PO4 and 0.04% (w/v) MgCl2·6H2O (pH 8.0 and 30°C), respectively. In the improved medium containing 0.1% (w/v) feather, keratinolytic protease production was around 53.3 ± 0.3 U/ml at 4 day; this value was 10-fold higher than the yield in the basal feather medium (5.3 ± 0.1 U/ml). After cultivation for 5 days in the improved medium, intact feather was completely degraded. Feather degradation resulted in free –SH group, soluble protein and amino acids production. The concentration of free –SH group in the culture medium was 15.5 ± 0.2 μM at 4 days. Nineteen amino acids including all essential amino acids were produced in the culture medium; the concentration of total amino acid produced was 3360.4 μM. Proline (2809.9 μM), histidine (371.3 μM) and phenylalanine (172.0 μM) were the major amino acids released in the culture medium. B. subtilis S8 showed the properties related to plant growth promotion: hydrolytic enzymes, ammonification, indoleacetic acid (IAA), phosphate solubilization, and broad-spectrum antimicrobial activity. Interestingly, the strain S8 grown in the improved medium produced IAA and antifungal activity, indicating simultaneous production of keratinolytic and antifungal activities and IAA by B. subtilis S8. These results suggest that B. subtilis S8 could be not only used to improve the nutritional value of feather wastes but also is useful in situ biodegradation of feather wastes. Furthermore, it could also be a potential biofertilizer or biocontrol agent applicable to crop plant soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ausubel FA, Brent R, Kingston RE, Moore DD, Smith J, Seidman JG, Struhl K (1988) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Böckle B, Müller R (1997) Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl Environ Microbiol 63:790–792

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    CAS  PubMed  Google Scholar 

  • Clesscerl LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington, DC

    Google Scholar 

  • Daroit DJ, Correa APF, Brandelli A (2009) Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int Biodeterior Biodegrad 63:358–363

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Fisher SH, Sonenshein AL (1991) Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu Rev Microbiol 45:107–135

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt P, Murray RGE, Costilow RN, Wester EW (1981) Manual of methods for general bacteriology. American Society for Microbiology, New York

    Google Scholar 

  • Ghosh A, Chakrabarti K, Chattopadhyay D (2008) Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J Ind Microbiol Biotechnol 35:825–834

    Article  CAS  PubMed  Google Scholar 

  • Gioppo NM da R, Moreira-Gasparin FG, Costa AM, Alexandrino AM, de Souza CGM, Peralta RM (2009) Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J Ind Microbiol Biotechnol 36:705–711

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    Article  CAS  Google Scholar 

  • Hadas A, Kautsky L (1994) Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertilizer Res 38:165–170

    Article  Google Scholar 

  • Haddar HO, Zaghloul TI, Saeed HM (2009) Biodegradation of native feather keratin by Bacillus subtilis recombinant strains. Biodegradation 20:687–694

    Article  Google Scholar 

  • Harrap BS, Woods EF (1964) Soluble derivatives of feather keratin. Biochem J 92:8–18

    CAS  PubMed  Google Scholar 

  • Ignatova Z, Gousterova A, Spassov G, Nedkov P (1999) Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycetes strain Thermoactinomyces. Can J Microbiol 45:217–222

    Article  CAS  PubMed  Google Scholar 

  • Langeveld JPM, Wang JJ, Van de Wiel DFM, Shih GC, Garssen GJ, Bossers A, Shih JCH (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188:1782–1789

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Kim JH, Kim HK, Lee JS (2004) Production and characterization of keratinase from Paracoccus sp. WJ-98. Biotechnol Bioprocess Eng 9:17–22

    Article  CAS  Google Scholar 

  • Lin X, Lee C, Casale ES, Shih JCH (1992) Purification and characterization of a keratinase from a feather degrading Bacillus licheniformis strain. Appl Environ Microbiol 58:3271–3275

    CAS  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Yamada Y, Mitsuya H, Shigeri Y, Yoshida Y, Saito Y, Matsui H, Watanabe K (2009) Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic Meiothermus rubber H328. Appl Microbiol Biotechnol 82:941–950

    Article  CAS  PubMed  Google Scholar 

  • Mazzoto AM, Cedrola SML, Lins U, Rosado AS, Silva KT, Chaves JQ, Rabinovitch L, Zingali RB, Vermelho AB (2010) Keratinolytic activity of Bacillus subtilis AMR using human hair. Lett Appl Microbiol 50:89–96

    Article  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S (1998) Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11

    Article  CAS  Google Scholar 

  • Papadoulos MC, Ketelaars EH (1986) Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal. Anim Feed Sci Technol 14:279–290

    Article  Google Scholar 

  • Park KH, Lee OM, Jung HI, Jeong JH, Jeon YD, Hwang DY, Lee CY, Son HJ (2010) Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Micobiol Biotechnol 86:947–955

    Article  CAS  Google Scholar 

  • Pavlica DA, Hora TI, Bradshaw JJ, Skogerboe RK, Baker R (1978) Volatiles from soil influencing activities of soil fungi. Phytopathology 14:758–765

    Article  Google Scholar 

  • Rai SK, Mukherjee AK (2010) Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem Eng J 48:173–180

    Article  CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed  Google Scholar 

  • Riffel A, Lucas F, Heeb P, Brandelli A (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179:258–265

    CAS  PubMed  Google Scholar 

  • Rodriguez H, Reynaldo F (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rozs M, Manczinger L, Vagvolgyi Cs, Kevei F, Hochkoeppler A, Rodriguez AGV (2001) Fermentation characteristics and secretion of proteases of a new keratinolytic strain of Bacillus licheniformis. Biotechnol Lett 23:1925–1929

    Article  CAS  Google Scholar 

  • Sangali S, Brandelli A (2000) Feather keratin hydrolysis by a Vibrio sp. strain kr2. J Appl Microbiol 89:735–743

    Article  CAS  PubMed  Google Scholar 

  • Shama G, Berwick PG (1991) Production of keratinolytic enzymes in a rotating frame bioreactor. Biotechnol Tech 5:359–362

    Article  CAS  Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Cura JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41:1768–1774

    Article  CAS  Google Scholar 

  • Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    Article  CAS  PubMed  Google Scholar 

  • Sommer P, Bormann C, Gotz F (1997) Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl Environ Microbiol 63:3553–3560

    CAS  PubMed  Google Scholar 

  • Tang YW, Bonner J (1947) The enzymatic inactivation of indoleacetic acid I. Some characteristics of the enzyme contained in pea seedlings. Arch Biochem 13:17–25

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Trivedi P, Pandy A, Palni LM (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163:329–336

    Article  PubMed  Google Scholar 

  • Wawrzkiewicz K, Lobarzewski J, Wolski T (1987) Intracellular keratinase of Trichophton gallinae. J Med Vet Mycol 25:261–268

    Article  CAS  PubMed  Google Scholar 

  • Williams CM, Richter CS, Mackenzie JM, Shih JCH (1990) Isolation, identification and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56:1509–1515

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Joo Son.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, JH., Jeon, YD., Lee, OM. et al. Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation 21, 1029–1040 (2010). https://doi.org/10.1007/s10532-010-9363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9363-y

Keywords

Navigation