Skip to main content
Log in

Biodegradability of 2-ethylhexyl nitrate (2-EHN), a cetane improver of diesel oil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The 2-ethyhexyl nitrate (2-EHN) is currently added to diesel oil to improve ignition and boost cetane number. The biodegradability of this widely used chemical needed to be assessed in order to evaluate the environmental impact in case of accidental release. In aerobic liquid cultures, biodegradation of 2-EHN was assessed in biphasic liquid cultures using an inert non-aqueous phase liquid such as 2,2,4,4,6,8,8-heptamethylnonane (HMN) as solvent for the hydrophobic substrate. 2-EHN was found to be biodegradable by microbial communities from refinery wastewater treatment plants, but was recalcitrant to those of urban wastewater treatment facilities. Out of eighteen hydrocarbon-polluted or non-polluted soil samples, six microbial populations were also able to degrade 2-EHN. However, strain isolation from these microbial populations was rather difficult suggesting close cooperation between members of the microbial communities. Specific axenic bacterial strains selected for their ability to catabolize recalcitrant-hydrocarbons were also tested for their capacity to degrade 2-EHN. In liquid cultures with HMN phase as non-aqueous phase liquid, some Mycobacterium austroafricanum strains were found to degrade and mineralize 2–EHN significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-EHN:

2-Ethylhexyl nitrate

MTBE:

Methyl tert-butyl ether

NOAEL:

No observed adverse effect level

HMN:

2,2,4,4,6,8,8-Heptamethylnonane

NAPL:

Non-aqueous phase liquid

WWTP:

Wastewater treatment plant

References

  • ATC (2006) High production volume: challenge program for nitric acid, 2-ethylhexylester. http://www.epa.gov/hpv/pubs/summaries/nitracd2/c14932rt.pdf

  • Battersby NS, Ciccognani D, Evans MR, King D, Painter HA, Peterson DR, Starkey M, CONCAWE Biodegradation Task Force (1999) An ‘inherent’ biodegradability test for oil products: description and results of an international ring test. Chemosphere 38:3219–3225. doi:10.1016/S0045-6535(98)00552-9

    Article  PubMed  CAS  Google Scholar 

  • Beam HW, Perry JJ (1973) Co-metabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons. Arch Mikrobiol 91:87–90. doi:10.1007/BF00409542

    Article  PubMed  CAS  Google Scholar 

  • Beam HW, Perry JJ (1974) Microbial degradation of cycloparaffinic hydrocarbons via co-metabolism and commensalism. J Gen Microbiol 82:163–169

    Google Scholar 

  • Béguin P, Chauvaux S, Miras I, Francois A, Fayolle F, Monot F (2003) Genes involved in the degradation of ether fuels by bacteria of the Mycobacterium/Rhodococus group. Oil Gas Sci Technol Rev IFP 58:489–495

    Article  Google Scholar 

  • Bhattacharya D, Sarma PM, Krishnan S, Mishra S, Lal B (2003) Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl Environ Microbiol 69:1435–1441. doi:10.1128/AEM.69.3.1435-1441.2003

    Article  PubMed  CAS  Google Scholar 

  • Bogan BW, Lahner LM, Sullivan WR, Paterek JR (2003) Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. J Appl Microbiol 94:230–239. doi:10.1046/j.1365-2672.2003.01824.x

    Article  PubMed  CAS  Google Scholar 

  • Bornemann H, Scheidt F, Sander W (2002) Thermal decomposition of 2-ethylhexyl nitrate (2-EHN). J Chem Kinet 34:34–38. doi:10.1002/kin.10017

    Article  CAS  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164. doi:10.1007/BF00170638

    Article  PubMed  CAS  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63. doi:10.1146/annurev.bi.64.070195.000333

    Article  PubMed  CAS  Google Scholar 

  • Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F et al (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183:6551–6557. doi:10.1128/JB.183.22.6551-6557.2001

    Article  PubMed  CAS  Google Scholar 

  • Fall RR, Brown JL, Schaeffer TL (1979) Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Appl Environ Microbiol 38:715–722

    PubMed  CAS  Google Scholar 

  • Francois A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762. doi:10.1128/AEM.68.6.2754-2762.2002

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Junco M, Gomez-Lahoz C, Niqui-Arroyo JL, Ortega-Calvo JJ (2003) Biosurfactant- and Biodegradation-Enhanced Partitioning of Polycyclic Aromatic Hydrocarbons from Nonaqueous-Phase Liquids. Environ Sci Technol 37:2988–2996. doi:10.1021/es020197q

    Article  PubMed  CAS  Google Scholar 

  • Guibet JC, Faure BE (1999) Fuels and Engines: technology, energy, environment. Editions Technip, Paris

    Google Scholar 

  • Haines JR, Kleiner EJ, McClellan KA, Koran KM, Holder EL, King DW et al (2005) Laboratory evaluation of oil spill bioremediation products in salt and freshwater systems. J Ind Microbiol Biotechnol 32:171–185. doi:10.1007/s10295-005-0218-1

    Article  PubMed  CAS  Google Scholar 

  • Johnson EL, Smith CA, O’Reilly KT, Hyman MR (2004) Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE. Appl Environ Microbiol 70:1023–1030. doi:10.1128/AEM.70.2.1023-1030.2004

    Article  PubMed  CAS  Google Scholar 

  • Jouanneau Y, Willison JC, Meyer C, Krivobok S, Chevron N, Besombes JL et al (2005) Stimulation of pyrene mineralization in freshwater sediments by bacterial and plant bioaugmentation. Environ Sci Technol 39:5729–5735. doi:10.1021/es050412d

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood KM, Chernik P, Foght JM, Gray MR (2008) Aerobic biotransformation of decalin (decahydronaphthalene) by Rhodococcus spp. Biodegradation. doi:10.1007/s10532-008-9181-7

    PubMed  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185:3828–3841. doi:10.1128/JB.185.13.3828-3841.2003

    Article  PubMed  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    PubMed  CAS  Google Scholar 

  • Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W et al (2005) Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 51:375–388. doi:10.1016/j.femsec.2004.09.015

    Article  PubMed  CAS  Google Scholar 

  • Lopes Ferreira NL, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006) Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70:358–365. doi:10.1007/s00253-005-0074-y

    Article  PubMed  Google Scholar 

  • Marchal R, Penet S, Solano-Serena F, Vandecasteele JP (2003) Gasoline and diesel oil biodegradation. Oil Gas Science and Technol–Rev IFP 58:441–448

    Article  CAS  Google Scholar 

  • Moreels D, Bastiaens L, Ollevier F, Merckx R, Diels L, Springael D (2004) Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. FEMS Microbiol Ecol 49:121–128. doi:10.1016/j.femsec.2004.02.016

    Article  CAS  Google Scholar 

  • Morgan P, Watkinson RJ (1989) Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol Rev 5:277–299. doi:10.1016/0168-6445(89)90025-9

    Article  PubMed  CAS  Google Scholar 

  • Muñoz R, Chambaud M, Sergio Bordel S, Villaverde S (2008) A systematic selection of the non-aqueous phase in a bacterial two liquid phase bioreactor treating α-pinene. Appl Microbiol Biotechnol 79:33–41. doi:10.1007/s00253-008-1400-y

    Article  PubMed  Google Scholar 

  • OECD (1992a) 301 Ready Biodegradability, OECD guidelines for testing of chemicals. Organisation for Economic Co-operation and development, Paris

    Google Scholar 

  • OECD (1992b) 302 B Zahn-Wellens/EMPA Test, OECD guidelines for testing of chemicals. Organisation for Economic Co-operation and development, Paris

    Google Scholar 

  • Penet S, Vendeuvre C, Bertoncini F, Marchal R, Monot F (2006) Characterisation of biodegradation capacities of environmental microflorae for diesel oil by comprehensive two-dimensional gas chromatography. Biodegradation 17:577–585. doi:10.1007/s10532-005-9028-4

    Article  PubMed  CAS  Google Scholar 

  • Poupin P, Ducrocq V, Hallier-Soulier S, Truffaut N (1999) Cloning and characterization of the genes encoding a cytochrome P450 (PipA) involved in piperidine and pyrrolidine utilization and its regulatory protein (PipR) in Mycobacterium smegmatis mc2155. J Bacteriol 181:3419–3426

    PubMed  CAS  Google Scholar 

  • Rohwerder T, Breuer U, Benndorf D, Lechner U, Müller RH (2006) The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate Is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72:4128–4135. doi:10.1128/AEM.00080-06

    Article  PubMed  CAS  Google Scholar 

  • Roling WF, van Verseveld HW (2002) Natural attenuation: what does the subsurface have in store? Biodegradation 13:53–64. doi:10.1023/A:1016310519957

    Article  PubMed  Google Scholar 

  • Sakai Y, Takahashi H, Wakasa Y, Kotani T, Yurimoto H, Miyachi N (2004) Role of alpha-methylacyl coenzyme A racemase in the degradation of methyl-branched alkanes by Mycobacterium sp. strain P101. J Bacteriol 186:7214–7220. doi:10.1128/JB.186.21.7214-7220.2004

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer TL, Cantwell SG, Brown JL, Watt DWS, Fall RR (1979) Microbial growth on hydrocarbons: terminal branching inhibits biodegradation. Appl Environ Microbiol 38:742–746

    PubMed  CAS  Google Scholar 

  • Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550. doi:10.1128/AEM.70.8.4544-4550.2004

    Article  PubMed  CAS  Google Scholar 

  • Sokolovska I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027. doi:10.1128/AEM.69.12.7019-7027.2003

    Article  PubMed  CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Ropars M, Lebeault JM, Vandecasteele JP (1999) Biodegradation of gasoline: kinetics, mass balance and fate of individual hydrocarbons. J Appl Microbiol 86:1008–1016. doi:10.1046/j.1365-2672.1999.00782.x

    Article  PubMed  CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Casaregola S, Vasnier C, Lebeault JM, Vandecasteele JP (2000a) A Mycobacterium strain with extended capacities for degradation of gasoline hydrocarbons. Appl Environ Microbiol 66:2392–2399. doi:10.1128/AEM.66.6.2392-2399.2000

    Article  PubMed  CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Lebeault JM, Vandecasteele JP (2000b) Distribution in the environment of degradative capacities for gasoline attenuation. Biodegradation 11:29–35. doi:10.1023/A:1026594717754

    Article  PubMed  CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Lebeault JM, Vandecasteele JP (2000c) Selection of microbial populations degrading recalcitrant hydrocarbons of gasoline by monitoring of culture-headspace composition. Lett Appl Microbiol 30:19–22. doi:10.1046/j.1472-765x.2000.00631.x

    Article  PubMed  CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Heiss S, Vandecasteele JP (2004) Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: growth and catabolic pathway. J Appl Microbiol 97:629–639. doi:10.1111/j.1365-2672.2004.02344.x

    Article  PubMed  CAS  Google Scholar 

  • Someroja S, Savolinen H (1983) Neurochemical effects of ethylhexyl nitrate in rats. Toxicol Lett 19:189–193. doi:10.1016/0378-4274(83)90281-3

    Article  PubMed  CAS  Google Scholar 

  • Strotmann U, Reuschenbach P, Schwarz H, Pagga U (2004) Development and evaluation of an online CO(2) evolution test and a multicomponent biodegradation test system. Appl Environ Microbiol 70:4621–4628. doi:10.1128/AEM.70.8.4621-4628.2004

    Article  PubMed  CAS  Google Scholar 

  • Tay ST, Hemond HF, Polz MF, Cavanaugh CM, Dejesus I, Krumholz LR (1998) Two new Mycobacterium strains and their role in toluene degradation in a contaminated stream. Appl Environ Microbiol 64:1715–1720

    PubMed  CAS  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits TH, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology - Rev. IFP 58:427–440

    Article  Google Scholar 

  • Wodzinski RS, Johnson MJ (1968) Yields of bacterial cells from hydrocarbons. Appl Microbiol 16:1886–1891

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John C. Willison for the gift of M. austroafricanum strains BHF004, Spyr_Ge_1, C6 and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floriane Solano-Serena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solano-Serena, F., Nicolau, E., Favreau, G. et al. Biodegradability of 2-ethylhexyl nitrate (2-EHN), a cetane improver of diesel oil. Biodegradation 20, 85–94 (2009). https://doi.org/10.1007/s10532-008-9202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9202-6

Keywords

Navigation