Skip to main content
Log in

Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Thirty-six bacteria that degraded long-chain hydrocarbons were isolated from natural environments using long-chain hydrocarbons (waste car engine oil, base oil or the c-alkane fraction of base oil) as the sole carbon and energy source. A phylogenetic tree of the isolates constructed using their 16S rDNA sequences revealed that the isolates were divided into six genera plus one family (Acinetobacter, Rhodococcus, Gordonia, Pseudomonas, Ralstonia, Bacillus and Alcaligenaceae, respectively). Furthermore, most of the isolates (27 of 36) were classified into the genera Acinetobacter, Rhodococcus or Gordonia. The hydrocarbon-degradation similarity in each strain was confirmed by the 2,6-dichlorophenol indophenol (2,6-DCPIP) assay. Isolates belonging to the genus Acinetobacter degraded long-chain normal alkanes (n-alkanes) but did not degrade short-chain n-alkanes or cyclic alkanes (c-alkanes), while isolates belonging to the genera Rhodococcus and Gordonia degraded both long-chain n-alkanes and c-alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  PubMed  CAS  Google Scholar 

  • Arenskötter M, Baumeister D, Berekka MM, Potter G, Kroppenstedt RM, Linos A, Steinbuchel A (2001) Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequenced. FEMS Microbiol Lett 205:277–282

    Article  PubMed  Google Scholar 

  • Asperger O, Singh HD (1991) The biology of Acinetobacter. Plenum Press, New York, pp 323–350

    Google Scholar 

  • Dua M, Johri AK, Singh A, Sethunathan N (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  PubMed  CAS  Google Scholar 

  • Hanson KG, Desai JD, Desai AJ (1993) A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol Tech 7:745–748

    Article  CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ko SH, Lebeault JM (1999) Effect of a mixed culture on co-oxidation during the degradation of saturated hydrocarbon mixture. J Appl Microbiol 87:72–79

    Article  PubMed  CAS  Google Scholar 

  • Koma D, Hasumi F, Yamamoto E, Ohta T, Chung SY, Kubo M (2001) Biodegradation of long-chain n-paraffines from waste oil of car engine by Acinetobacter sp. J Biosci Bioeng 91:94–96

    Article  PubMed  CAS  Google Scholar 

  • Koma D, Hasumi F, Chung SY, Kubo M (2003a) Biodegradation of n-alkylcyclohexanes by co-oxidation via multiple pathways in Acinetobacter sp. ODDK71. J Biosci Bioeng 95:641–644

    PubMed  CAS  Google Scholar 

  • Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY, Kubo M (2003b) Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci Biochem Bioeng 67:1590–1593

    Article  CAS  Google Scholar 

  • Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY, Kubo M (2005) Degradation pathways of cyclic alkanes in Rhodococcus sp. NDKK48. Appl Microbiol Biotechnol 67:1590–1593

    Google Scholar 

  • Komukai-Nakamura S, Sugiura K, Yamauchi-Inomata Y, Toki H, Venkateswaran K, Yamamoto S, Tanaka H, Harayama S (1996) Construction of bacterial consortia that degrade Arabian light crude oil. J Ferment Bioeng 82:570–574

    Article  CAS  Google Scholar 

  • Konishi S, Ueda R (1992) Junkatsuyu no kiso to ouyou (in Japanese). Corona Publishing, Tokyo, pp 27–35

    Google Scholar 

  • Korda A, Santas P, Tenente A, Santas R (1997) Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Appl Microbiol Biotechnol 48:677–686

    Article  PubMed  CAS  Google Scholar 

  • Kostichka K, Thomas SM, Gibson KJ, Nagarajan V, Cheng Q (2001) Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. J Bacteriol 183:6478–6486

    Article  PubMed  CAS  Google Scholar 

  • Kummer C, Schumann P, Stackebrandt E (1999) Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int J Syst Bacteriol 118:394–399

    Google Scholar 

  • Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81:355–362

    PubMed  CAS  Google Scholar 

  • Lappas AA, Patiaka D, Ikonomou D, Vasalos A (1997) Separation and characterization of paraffins and naphthenes from FCC feedstocks. Ind Eng Chem Res 36:3110–3115

    Article  CAS  Google Scholar 

  • Matsumiya Y, Kubo M (2007) Bioprocess handbook (in Japanese). NTS Publishing, Tokyo pp 638–652

    Google Scholar 

  • Perry JJ (1979) Microbial cooxidations involving hydrocarbons. Microbiol Rev 43:59–72

    PubMed  CAS  Google Scholar 

  • Perry JJ (1984) Microbial metabolism of cyclic alkanes. Atlas, R. M., New York, pp 61–98

  • Pritchard PH, Mueller IJG, Rogers JC, Kremer FV, Glaser JA (1992) Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335

    Article  CAS  Google Scholar 

  • Rehm H, Reiff I (1981) Mechanism and occurrence of microbial oxidation of long chain alkanes. Adv Biochem Eng 19:175–215

    CAS  Google Scholar 

  • Sakai Y, Maeng JH, Tani Y, Kato N (1994) Use of long-chain n-alkanes (C13-C44) by an isolate, Acinetobacter sp. M-1. Biosci Biotechnol Biochem 58:2128–2130

    Article  CAS  Google Scholar 

  • Sanpa S, Sumiyoshi S, Kujira T, Matsumiya Y, Kubo M (2006) Isolation and characterization of a Bluegill-degrading microorganism, and analysis of the root hair-promoting effect of the degraded products. Biosci Biotechnol Biochem 70:340–347

    Article  PubMed  CAS  Google Scholar 

  • Schumacher JD, Fakoussa RM (1999) Degradation of alicyclic molecules by Rhodococcus ruber CD4. Appl Microbiol Biotechnol 52:85–90

    Article  PubMed  CAS  Google Scholar 

  • Stroud JL, Paton GI, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102:1239–1253

    Article  PubMed  CAS  Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Smits THM, Whyte LG, Schorcht S, Röthlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002) Alkane hydroxylases homologues in Gram-positive strains. Environ Microbiol 4:676–682

    Article  PubMed  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  PubMed  CAS  Google Scholar 

  • van Hamme JD, Odumeru JA, Ward OP (2000) Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Can J Microbiol 46:441–450

    Article  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. A overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348

    Article  PubMed  CAS  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniére L, Inniss W, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    PubMed  CAS  Google Scholar 

  • Whyte LG, Smits THM, Labbe D, Witholt B, Greer CW, van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoki Kubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, K., Koma, D., Matsumiya, Y. et al. Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation 19, 749–757 (2008). https://doi.org/10.1007/s10532-008-9179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9179-1

Keywords

Navigation