Skip to main content

Advertisement

Log in

Temporal and spatial patterns of orchid species distribution in Greece: implications for conservation

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Studies comparing species’ distribution range at different time periods provide valuable information about temporal trends, and may help to identify the factors responsible for these changes. This knowledge is vital for setting conservation priorities and applying suitable management strategies and practices focused on species’ conservation. We examined records produced before and after December 31, 1985 for determining possible changes in the distribution range of 195 orchid species recorded in Greece, using a 10 × 10 km grid as the recording unit. We used regression techniques to explore the association of species richness with environmental and spatial variables. Species richness was calculated by using the orchid records made (a) before December 31, 1985, (b) after January 1, 1986, and (c) in both time periods. Generalized linear models (GLM) were used for identifying the most significant factors associated with the distribution of the threatened orchids of Greece. Most Greek orchids showed an increasing trend in distribution from the first to the second period, with the exception of a few Critically Endangered species, whose distribution was larger in the first than in the second period. The spatial distribution of the threatened orchids was mostly explained by land area and the area of the calcareous substrates at each grid cell, whereas all variables that were used in the GLM analysis accounted for about 32% of the variance. The observed increasing trend in orchid distribution should be attributed to the extensive research efforts during the second period, especially in areas of high altitude and towards the northern parts of Greece. Our results did not support the findings of other studies, mainly from northern Europe, which showed a significant decline in the distribution range of their orchid flora. These differences in distribution trends could be attributed to the complex orographic configuration of Greece, which renders large parts of the country rather unsuitable for agricultural use or for extensive urban development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anon (2009) PASW 18 for Windows. Rel. 18.0.0. SPSS, Inc., Chicago

    Google Scholar 

  • Antonopoulos Z, Tsiftsis S (2017) Atlas of the Greek orchids, vol II. Mediterraneo Editions, Rethymno

    Google Scholar 

  • Ballantyne M, Pickering CM (2013) Tourism and recreation: a common threat to IUCN Red-Listed vascular plants in Europe. Biodivers Conserv 22:3027–3044

    Google Scholar 

  • Baumann B, Baumann H (1988) Ein Beitrag zur Kenntnis der Gattung Epipactis Zinn im Mittelmeergebiet. Mitt Arb Heim Orchid Baden-Württ 20:1–68

    Google Scholar 

  • Bayer M, Künkele S, Willing E (1978) Interimskarten zur Verbreitung der südgriechischen Orchideen. Mitt Arb Heim Orchid Baden-Württ 10:114–216

    Google Scholar 

  • Bernardos S, Tyteca D, Garcia-Barriuso M, Crespí A, Castro A, Amich F (2006) Current status and conservation of the Lusitan Duriensean orchids (Duero Basin, NE Portugal and CW Spain). Acta Bot Gall 153:273–284

    Google Scholar 

  • Bilz M, Kell SP, Maxted N, Lansdown RV (2011) European red list of vascular plants. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, van den Berg C, Schuiteman A (2015) An updated classification of Orchidaceae. Bot J Linn Soc 177:151–174

    Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494

    PubMed  Google Scholar 

  • Croce A, Nazzaro R (2017) An atlas of orchids distribution in the Campania region (Italy), a citizen science project for the most charming plant family. Ital Bot 4:15–32

    Google Scholar 

  • Dafni A (1987) Pollination in Orchis and related genera: evolution from reward to deception. In: Adritti J (ed) Orchid biology, reviews and perspectives, IV. Cornell University Press, Ithaca, pp 79–104

    Google Scholar 

  • Delforge P (2006) Orchids of Europe, North Africa and the Middle East. A & C Black, London

    Google Scholar 

  • Djordjević V, Tsiftsis S (2019) Patterns of orchid species richness and composition in relation to geological substrates. Wulfenia 26:1–21

    Google Scholar 

  • Djordjević V, Tsiftsis S, Lakušić D, Jovanović S, Stevanović V (2016) Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. Syst Biodivers 14:355–370

    Google Scholar 

  • Djordjević V, Lakušić D, Jovanović S, Stevanović V (2017) Distribution and conservation status of some rare and threatened orchid taxa in the central Balkans and the southern part of the Pannonian Plain. Wulfenia 24:143–162

    Google Scholar 

  • ESRI (2012) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fay MF (2018) Orchid conservation: how can we meet the challenges in the twenty-first century? Bot Stud 59:16

    PubMed  PubMed Central  Google Scholar 

  • Fréjaville T, Benito Garzón M (2018) The EuMedClim database: yearly climate data (1901–2014) of 1 km resolution grids for Europe and the Mediterranean Basin. Front Ecol Evol 6:31

    Google Scholar 

  • Govaerts R (2020) World Checklist of Orchidaceae. Royal Botanic Gardens, Kew. http://wcsp.science.kew.org/. Accessed 31 Jan 2020

  • Hágsater E, Dumont V (eds) (1996) Orchids: status, survey and conservation action plan. IUCN, Gland

    Google Scholar 

  • Halácsy E (1904) Conspectus Florae Graecae, vol III. Sumptibus Guilelmi Engelmann, Lipsiae

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Hölzinger J, Künkele S (1983) Beiträge zur Verbreitung der Dactylorhiza-Arten in Griechenland. Mitt Arb Heim Orchid Baden-Württ 15:503–540

    Google Scholar 

  • Hölzinger J, Künkele S (1988) Dactylorhiza macedonica sp. nova. Mitt Arb Heim Orchid Baden-Württ 20:185–195

    Google Scholar 

  • Hölzinger J, Künkele A, Künkele S (1985) Die Verbreitung der Gattung Ophrys L. auf dem griechischen Festland. Mitt Arb Heim Orchid Baden-Württ 17:1–101

    Google Scholar 

  • Hutchings MJ, Robbirt KM, Roberts DL, Davy AJ (2018) Vulnerability of a specialized pollination mechanism to climate change revealed by a 356-year analysis. Bot J Linn Soc 186:498–509

    Google Scholar 

  • IGME (1983) Geological map of Greece, 1:500,000. IGME, Athens

    Google Scholar 

  • IUCN (2012b) Guidelines for application of IUCN Red List Criteria at regional and national levels: Version 4.0. IUCN, Gland

    Google Scholar 

  • Jacquemyn H, Brys R, Hermy M, Willems JH (2005) Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and The Netherlands. Biol Conserv 121:257–263

    Google Scholar 

  • Jacquemyn H, Brys R, Hermy M, Willems JH (2007) Long-term dynamics and population viability in one of the last populations of the endangered Spiranthes spiralis (Orchidaceae) in the Netherlands. Biol Conserv 134:14–21

    Google Scholar 

  • Jersáková J, Kindlmann P, Stříteský M (2002) Population dynamics of Orchis morio in the Czech Republic under human influence. In: Kindlmann P, Willems JH, Whigham DF (eds) Trends and fluctuations and underlying mechanisms in terrestrial orchid populations. Backhuys Publishers, Leiden, pp 209–224

    Google Scholar 

  • Kolanowska M, Jakubska-Busse A (2020) Is the lady’s-slipper orchid (Cypripedium calceolus) likely to shortly become extinct in Europe? Insights based on ecological niche modelling. PLoS ONE 15(1):e0228420. https://doi.org/10.1371/journal.pone.0228420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kull T, Hutchings MJ (2006) A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv 129:31–39

    Google Scholar 

  • Kull T, Selgis U, Peciña MV, Metsare M, Ilves A, Tali K, Sepp K, Kull K, Shefferson RP (2016) Factors influencing IUCN threat levels to orchids across Europe on the basis of national red lists. Ecol Evol 6(17):6245–6265

    PubMed  PubMed Central  Google Scholar 

  • Künkele S (1983) Zum Stand der Orchideenkartierung in Griechenland. Mitt Arb Heim Orchid Baden-Württ 15:11–42

    Google Scholar 

  • Künkele S, Paysan K (1981) Die Orchideenflora von Euböa (Griechenland). Beih Veroff Nat Landsch Baden-Württ Karlsr 23:1–138

    Google Scholar 

  • Le Roux JJ, Hui C, Castillo ML, Iriondo JM, Keet JH, Khapugin AA, Médail F, Rejmánek M, Theron G, Yannelli FA, Hirsch H (2019) Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Curr Biol 29:2912–2918

    PubMed  Google Scholar 

  • Lussu M, Marignani M, Lai R, Loi MC, Cogoni A, Cortis P (2020) A synopsis of Sardinian studies: why is it important to work on island orchids? Plants 9:853

    PubMed Central  Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SLL, Hoskins AJ, Lysenko I, Phillips HRP, Burton VJ, Chng CWT, Emerson S, Gao D, Pask-Hale G, Hutton J, Jung M, Sanchez-Ortiz K, Simmons BI, Whitmee S, Zhang H, Scharlemann JPW, Purvis A (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291

    CAS  PubMed  Google Scholar 

  • Nieto A, Roberts SP, Kemp J, Rasmont P, Kuhlmann M, García Criado M et al (2014) European red list of bees. Publication Office of the European Union, Luxembourg

    Google Scholar 

  • Ongaro S, Martellos S, Bacaro G, De Agostini A, Cogoni A, Cortis P (2018) Distributional pattern of Sardinian orchids under a climate change scenario. Community Ecol 19:223–232

    Google Scholar 

  • Pfeifer M, Wiegand K, Heinrich W, Jetschke G (2006) Long-term demographic fluctuations in an orchid species driven by weather: implications for conservation planning. J Appl Ecol 43:313–324

    Google Scholar 

  • Pfeifer M, Passalacqua NG, Bartram S, Schatz B, Croce A, Carey PD, Kraudelt H, Jeltsch F (2010) Conservation priorities differ at opposing species borders of a European orchid. Biol Conserv 143:2207–2220

    Google Scholar 

  • Phitos D, Strid A, Snogerup S, Greuter W (eds) (1995) The Red Data Book of Rare and Threatened Plants of Greece. WWF for Nature, Athens

    Google Scholar 

  • Phitos D, Constantinidis T, Kamari G (eds) (2009a) The Red Data Book of Rare and Threatened Plants of Greece, vol I: A–D. Hellenic Botanical Society, Patra (in Greek)

    Google Scholar 

  • Phitos D, Constantinidis T, Kamari G (eds) (2009b) The Red Data Book of Rare and Threatened Plants of Greece, vol I: E–Z. Hellenic Botanical Society, Patra (in Greek)

    Google Scholar 

  • Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Sutherland WJ, Vir B (2010) Biodiversity conservation: challenges beyond 2010. Science 329:1298–1303

    CAS  PubMed  Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Google Scholar 

  • Rohmer M (2018) Limodorum trabutianum, first report from Western Macedonia (Greece). J Eur Orchid 50:339–344

    Google Scholar 

  • Sarris A, Maniadakis M, Lazaridou O, Pirintsos SA (2005) Studying land use patterns in Crete Island, Greece, through a time sequence of landsat images and mapping vegetation patterns. WSEAS Trans Environ Dev 1:272–279

    Google Scholar 

  • Shefferson RP, Jacquemyn H, Kull T, Hutchings MJ (2020) The demography of terrestrial orchids: life history, population dynamics and conservation. Bot J Linn Soc 192:315–332

    Google Scholar 

  • Stewart J (1992) The conservation of European orchids. Nature and Environment 57. Council of Europe, Strasbourg

    Google Scholar 

  • Strid A, Tan K (eds) (1986) Mountain flora of Greece, vol I. Cambridge University Press, Cambridge

    Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice C (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250. https://doi.org/10.1073/pnas.0409902102

    Article  CAS  PubMed  Google Scholar 

  • Tsiftsis S (2020) The complex effect of heterogeneity and isolation in determining alpha and beta orchid diversity on islands in the Aegean Archipelago. Syst Biodivers 18:281–294

    Google Scholar 

  • Tsiftsis S, Antonopoulos Z (2017) Atlas of the Greek orchids, vol I. Mediterraneo Editions, Rethymno

    Google Scholar 

  • Tsiftsis S, Djordjević V (2020) Modelling sexually deceptive orchid species distributions under future climates: the importance of plant–pollinator interactions. Sci Rep 10:10623. https://doi.org/10.1038/s41598-020-67491-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiftsis S, Tsiripidis I (2016) Threat categories of the Greek orchids. Bot Chron 21:43–74

    Google Scholar 

  • Tsiftsis S, Štípková Z, Kindlmann P (2019) Role of way of life, latitude, elevation and climate on the richness and distribution of orchid species. Biodivers Conserv 28:75–96

    Google Scholar 

  • Vogt-Schilb H, Munoz F, Richard F, Schatz B (2015) Recent declines and range changes of orchids in Western Europe (France, Belgium and Luxembourg). Biol Conserv 190:133–141

    Google Scholar 

  • Vogt-Schilb H, Pradel R, Geniez P, Hugot L, Delage A, Richard F, Schatz B (2016) Responses of orchids to habitat change in Corsica over 27 years. Ann Bot 118:115–123

    PubMed  PubMed Central  Google Scholar 

  • Whigham FD, Willems HJ (2003) Demographic studies and life-history strategies of temperate terrestrial orchids as a basis for conservation. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History, Kota Kinabalu, pp 137–158

    Google Scholar 

  • Willems JH, Melser C (2008) Population dynamics and life-history of Coeloglossum viride (L.) Hartm.: an endangered orchid species in The Netherlands. Bot J Linn Soc 126:83–93

    Google Scholar 

  • Willing B, Willing E (1988) Die Gattung Dactylorhiza in Griechenland. Teil 3: Dactylorhiza kalopissii Nelson und Neufunde anderer Arten. Mitt Arb Heim Orchid Baden-Württ 20:391–437

    Google Scholar 

  • Willing B, Willing E (1991) Die Gattung Dactylorhiza in Griechenland. Teil 5: Untersuchungsergebnisse 1989/1990 sowie weitere Fundmeldungen. Ber Arb Heim Orchid 8:4–53

    Google Scholar 

  • Wotavová K, Balounová Z, Kindlmann P (2004) Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol Conserv 118:271–279

    Google Scholar 

  • Zaganiaris D (1940) Herbarium Macedonicum. Tertium et quartium mille. Sci Ann Fac Phys Math Aristot Univ Thessalon 6:41–139

    Google Scholar 

  • Zhang Z, Yan Y, Tian Y, Li J, He J-S, Tang Z (2015) Distribution and conservation of orchid species richness in China. Biol Conserv 181:64–72

    Google Scholar 

  • Zizka A, Antonelli A, Silvestro D (2020) Sampbias, a method for quantifying geographic sampling biases in species distribution data. BioRxiv. https://doi.org/10.1101/2020.01.13.903757

    Article  Google Scholar 

Download references

Acknowledgements

We greatly thank and appreciate two anonymous reviewers for their helpful suggestions and comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Tsiftsis.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 24 kb)

Appendix

Appendix

See Table 3.

Table 3 Number of grid cells and occupied area of the orchids of Greece

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiftsis, S., Tsiripidis, I. Temporal and spatial patterns of orchid species distribution in Greece: implications for conservation. Biodivers Conserv 29, 3461–3489 (2020). https://doi.org/10.1007/s10531-020-02035-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-02035-0

Keywords

Navigation