Skip to main content

Advertisement

Log in

The Palaearctic steppe biome: a new synthesis

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The Palaearctic steppes range from the Mediterranean basin towards China, forming one of the largest continuous terrestrial biomes. The literature on steppe ecology and conservation is vast but scattered and often not available in English. We provide a review of some key topics based on a new definition of steppes, which includes also Mediterranean steppes and alpine rangelands of the Asian Highlands. Revisiting the terrestrial ecoregions of the world, we estimate that the Palaearctic steppe biome extends over ca. 10.5 million km2. Major chorological regions differ in their macroclimatic niche with a clear distinction between Middle Asia with its winter precipitation and the Central Asian summer-rain regions of the Mongolian plateau and of Tibet. Steppe soils store large amounts of carbon, yet the sequestration potential is debated and depends on land use. Major physiognomic-ecological steppe types include forest-, typical-, desert-, and alpine-steppe, which vary in the importance of grasses, mainly C3 species. The steppes host a specialised fauna, and Middle Asia, Tibet, and especially Mongolia, have large herds of migrating ungulates. The share of pristine and protected sites is low in the steppe regions, with conversion into croplands being the most important land use impact in Europe, Middle Asia, and the Mediterranean, while grazing has a severe impact in some parts of Mongolia and Tibet. There are major gaps in our knowledge on: (1) the effects of climate change on the crucial seasonal patterns; (2) the role of steppe soils in the global carbon budget; and (3) the ecology and distribution of most animal groups except vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photos J. Dengler, O. Demina, K. Wesche, D. Ambarlı

Fig. 2
Fig. 3
Fig. 4

(adopted from Hijmans et al. 2005). (Color figure online)

Fig. 5

(adopted from Hijmans et al. 2005). (Color figure online)

Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BP:

Years before present

cal BP:

Calibrated years before present

QR:

Range between quartiles

s.lat.:

Sensu lato (in the wide sense)

s.str.:

Sensu stricto (in the narrow sense)

TEOWs:

Terrestrial ecoregions of the world (Olson et al. 2001)

References

  • Acton DF (1992) Grassland soils. In: Coupland RT (ed) Ecosystems of the world 8A: natural grasslands: introduction and Western Hemisphere. Elsevier, Amsterdam, pp 25–54

    Google Scholar 

  • Adak MS, Kendir H, Birsin Avcı M (2005) Tarımsal kullanımda çayır ve meraların yeri ve Türkiye’deki genel durumun değerlendirilmesi raporu. WWF Türkiye, Ankara

    Google Scholar 

  • Addison J, Greiner R (2016) Applying the social–ecological systems framework to the evaluation and design of payment for ecosystem service schemes in the Eurasian steppe. Biodivers Conserv. doi:10.1007/s10531-015-1016-3

    Google Scholar 

  • Addison J, Friedel M, Brown C, Davies J, Waldron S (2012) A critical review of degradation assumptions applied to Mongolia’s Gobi Desert. Rangel J 34:125–137

    Article  Google Scholar 

  • Aires LMI, Pio CA, Pereira JS (2008) Carbon dioxide exchange over a Mediterranean C3/C4 grassland during two climatically contrasting years. Grass Forage Sci 14:539–555

    Google Scholar 

  • Akasbi Z, Oldeland J, Dengler J, Finckh M (2012) Social and ecological constraints on decision making by transhumant pastoralists: a case study from the Moroccan Atlas Mountains. J Mt Sci 9:307–321

    Article  Google Scholar 

  • Akhani H, Mahdavi P, Noroozi J, Zarrinpour V (2013) Vegetation patterns of the Irano-Turanian steppe along a 3,000 m altitudinal gradient in the Alborz Mountains of Northern Iran. Folia Geobot 48:229–255

    Article  Google Scholar 

  • Alcantara C, Kuemmerle T, Baumann M et al (2013) Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ Res Lett 8:035035

    Article  Google Scholar 

  • Allington GRH, Valone TJ (2014) Islands of fertility: a byproduct of grazing? Ecosystems 17:127–141

    Article  Google Scholar 

  • Ambarlı D, Bilgin CC (2014) Effects of landscape, land use and vegetation on bird community composition and diversity in inner Anatolian steppes. Agric Ecosyst Environ 182:37–46

    Article  Google Scholar 

  • Ambarlı D, Zeydanlı US, Balkız Ö et al (2016) An overview of biodiversity and conservation status of steppes of the Anatolian Biogeographical Region. Biodivers Conserv. doi:10.1007/s10531-016-1172-0

    Google Scholar 

  • Astana Times (2014) Effort begins to revive endangered Przewalski Horse population in Kazakhstan. http://www.astanatimescom/2014/11/effort-begins-revive-endangered-przewalski-horse-population-kazakhstan/

  • Atamov VV (2002) Azerbaycan’ın bozkir vejetasyonunun fitocoğrafik bölgeleri. Ot Sist Bot Derg 9(2):101–116

    Google Scholar 

  • Auerswald K, Wittmer MHOM, Bai YF et al (2012) C4 abundance in an Inner Mongolia grassland system is driven by temperature-moisture interaction not grazing pressure. Basic Appl Ecol 13:67–75

    Article  Google Scholar 

  • Austin AT (2011) Has water limited our imagination for aridland biogeochemistry? Trends Ecol Evol 26:229–235

    Article  PubMed  Google Scholar 

  • Bagchi S, Ritchie M (2010) Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes. Oecologia 164:1075–1082

    Article  PubMed  Google Scholar 

  • Barkoudah Y, Darwish A, Antoun M (2000) Biological diversity: national report. Biodiversity Unit, Syrian Arab Republic Ministry of Environment. https://www.cbd.int/doc/world/sy/sy-nr-01-en.pdf. Accessed 09 June 2016

  • Batsaikhan N, Buuveibaatar B, Chimed B et al (2014) Conserving the world’s finest grassland amidst ambitious national development. Conserv Biol 28:1736–1739

    Article  PubMed  Google Scholar 

  • Baumbach H, Pfützenreuter S (eds) (2013) Steppenlebensräume Europas—Gefährdung, Erhaltungsmaßnahmen und Schutz. Thüringer Ministerium für, Landwirtschaft, Forsten, Umwelt und Naturschutz, Erfurt

    Google Scholar 

  • Bedunah D, Harris RB (2002) Past, present & future: rangelands in China. Rangel Arch 24:17–22

    Google Scholar 

  • Berger J, Buuveibaatar B, Mishra C (2013) Globalization of the cashmere market and the decline of large mammals in Central Asia. Conserv Biol 27:679–689

    Article  PubMed  Google Scholar 

  • Bohn U, Gollub G, Hettwer C et al (eds) (2003) Karte der natürlichen Vegetation Europas–Maßstab 1: 2 500 000—Erläuterungstext. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Bone M, Johnson DA, Kelaidis P, Kintgen M, Vickerman LG (2015) Steppes: the plants and ecology of the world’s semi-arid regions. Timber, Portland

    Google Scholar 

  • Breckle SW, Dittmann MD, Rafiqpoor MD (2010) Field guide Afghanistan. Scientia Bonnensis Gustav-Stresemann-Institut, Bonn

    Google Scholar 

  • Brinkert A, Hölzel N, Sidorova T, Kamp J (2016) Spontaneous steppe restoration on abandoned cropland in Kazakhstan: grazing determines successional pathways. Biodivers Conserv. doi:10.1007/s10531-015-1020-7

    Google Scholar 

  • Brogaard S, Li X (2006) Agricultural performance on marginal land in Eastern Inner Mongolia, China: development in the pre- and post-1978 reform periods. GeoJournal 64(3):163–175

    Article  Google Scholar 

  • Cannon PF, Hywel-Jones NL, Maczey N et al (2009) Steps towards sustainable harvest of Ophiocordyceps sinensis in Bhutan. Biodivers Conserv 18:2263–2281

    Article  Google Scholar 

  • Cao J, Holden NM, Lü XT, Du G (2011) The effect of grazing management on plant species richness on the Qinghai-Tibetan Plateau. Grass Forage Sci 66:333–336

    Article  Google Scholar 

  • Chen H, Zhu Q, Peng C et al (2013a) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19:2940–2955

    Article  PubMed  Google Scholar 

  • Chen X, Bai J, Li X et al (2013b) Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Curr Opin Environ Sustain 5:116–127

    Article  Google Scholar 

  • Chen FH, Dong GH, Zhang DJ et al (2015a) Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347:248–250

    Article  CAS  PubMed  Google Scholar 

  • Chen X, An S, Inouye DW, Schwartz MD (2015b) Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob Chang Biol 21:3635–3646

    Article  PubMed  Google Scholar 

  • Clark FE, Woodmansee RG (1992) Nutrient cycling. In: Coupland RT (ed) Natural grasslands ecosystems of the world, vol 8A. Elsevier, Amsterdam, pp 137–149

    Google Scholar 

  • Conte TJ, Tilt B (2014) The effects of China’s grassland contract policy on pastoralists’ attitudes towards cooperation in an Inner Mongolian banner. Hum Ecol 42:837–846

    Article  Google Scholar 

  • Coupland RT (1993) Overview of the grasslands of Europa and Asia. In: Coupland RT (ed) Ecosystems of the world: Eastern Hemisphere and résumé, vol 8B. Elsevier, Amsterdam, pp 1–2

    Google Scholar 

  • Cressey GB (1960) The deserts of Asia. J Asian Stud 19:389–402

    Article  Google Scholar 

  • Critical Ecosystem Partnership Fund (2004) Caucasus biodiversity hotspot: ecosystem profile. Final version 2003. Critical ecosystem partnership fund http://www.cepf.net/where_we_work/regions/europe_central_asia/caucasus/ecosystem_profile/Pages/default.aspx. Accessed 08 Jun 2016

  • Cui X, Graf H-F (2009) Recent land cover changes on the Tibetan Plateau: a review. Clim Chang 94:47

    Article  Google Scholar 

  • Czúcz B, Gálhidy L, Mátyás C (2011) Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann For Sci 68:99–108

    Article  Google Scholar 

  • Dagvadorj D, Khuldorj B, Aldover RZ (eds) (2009) Mongolia assessment report on climate change 2009. Ministry of Nature, Environment and Tourism, Ulaanbaatar

    Google Scholar 

  • Davidson AD, Detling JK, Brown JH (2012) Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Front Ecol Environ 10:477–486

    Article  Google Scholar 

  • De Beurs K, Wright C, Henebry G (2009) Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan. Environ Res Lett 4:045012

    Article  Google Scholar 

  • Deák B, Tóthmérész B, Valkó O et al (2016) Cultural monuments and nature conservation: a review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers Conserv. doi:10.1007/s10531-016-1081-2

    Google Scholar 

  • Degefie DT, Fleischer E, Klemm O et al (2014) Climate extremes in South Western Siberia: past and future. Stoch Environ Res Risk Assess 28:2161–2173

    Article  Google Scholar 

  • Deng L, Yan W, Zhang Y, Shangguan Z (2016) Severe depletion of soil moisture following land-use changes for ecological restoration: evidence from northern China. For Ecol Manag 366:1–10

    Article  Google Scholar 

  • Dengler J, Janisova M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14

    Article  Google Scholar 

  • Dixon AP, Faber-Langendoen D, Josse C et al (2014) Distribution mapping of world grassland types. J Biogeogr 41:2003–2019

    Article  Google Scholar 

  • Djamali M, Brewer S, Breckle SW, Jackson ST (2012) Climatic determinism in phytogeographic regionalization: a test from the Irano-Turanian region, SW and Central Asia. Flora 207:237–249

    Article  Google Scholar 

  • Dorji T, Totland Ø, Moe SR et al (2013) Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Chang Biol 19:459–472

    Article  PubMed  Google Scholar 

  • Dubinin M, Potapov P, Lushchekina A, Radeloff VC (2010) Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sens Environ 114:1638–1648

    Article  Google Scholar 

  • Dubinin M, Luschekina A, Radeloff VC (2011) Climate, livestock, and vegetation: what drives fire increase in the arid ecosystems of Southern Russia? Ecosystems 14:547–562

    Article  CAS  Google Scholar 

  • Dumont B, Andueza D, Niderkorn V et al (2015) A meta-analysis of climate change effects on forage quality in grasslands: perspectives in mountains and Mediterranean areas. Grass Forage Sci 70:239–254

    Article  CAS  Google Scholar 

  • Durgin JR, Frank A (1962) The Virgin lands programme 1954–1960. Europe 13:255–280

    Google Scholar 

  • Eckert S, Hüsler F, Liniger H, Hodel E (2015) Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J Arid Environ 113:16–28

    Article  Google Scholar 

  • Edgell HS (2006) Arabian deserts: nature, origin and evolution. Springer, Dordrecht

    Book  Google Scholar 

  • Eliáš PJ, Sopotlieva D, Ditě D et al (2013) Vegetation diversity of salt-rich grasslands in Southeast Europe. Appl Veg Sci 16:521–537

    Article  Google Scholar 

  • Ellis JE, Price K, Boone R et al (2002) Integrated assessment of climate change effects on vegetetation in Mongolia and inner Mongolia. In: Chuluun T, Ojima D (eds) Fundamental issues affecting sustainability of the Mongolian steppe. IISCN, Ulaanbataar, pp 26–33

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Ermakov N, Chytrý M, Valachovič M (2006) Vegetation of the rock outcrops and screes in the forest-steppe and steppe belts of the Altai and Western Sayan Mts., southern Siberia. Phytocoenologia 36:509–545

    Article  Google Scholar 

  • Ermakov N, Larionov AV, Polyakova MA (2012) The syntaxa of the meadow steppes of Helictotrichetalia schelliani from the Altai and Khakasia. Vestnik NGU Sib Biol Klin Med 10:16–23 (in Russian)

    Google Scholar 

  • Farahpour M, van Keulen H, Sharifi MA, Bassiri M (2004) A planning support system for rangeland allocation in Iran with case study of Chadegan sub-region. Rangel J 26:225–236

    Article  Google Scholar 

  • Fernandez-Gimenez ME (1999) Sustaining the steppes: a geographical history of pastoral land use in Mongolia. Geogr Rev 89:315–342

    Article  Google Scholar 

  • Fernandez-Gimenez ME, Allen-Diaz B (1999) Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia. J Appl Ecol 36:871–885

    Article  Google Scholar 

  • Fet V, Atamuradov K (2012) Biogeography and ecology of Turkmenistan. Springer, Heidelberg

    Google Scholar 

  • Finckh M, Poete P (1987) Vegetation map of the Drâa basin. In: Schulz O, Judex M (eds) IMPETUS Atlas Morocco. Research results 2000–2007. University of Bonn, Bonn, pp 31–32

    Google Scholar 

  • Fischer M, Wipf S (2002) Effect of low-intensity grazing on the species-rich vegetation of traditionally mown subalpine meadows. Biol Conserv 104:1–11

    Article  Google Scholar 

  • Fox JF, Dorji T (2009) Traditional hunting of Tibetan Antelope, its relation to antelope migration, and its rapid transformation in the Western Chang Tang Nature Reserve. Arct Antarct Alp Res 41:204–211

    Article  Google Scholar 

  • Fox JF, Dhondup K, Dorji T (2009) Tibetan antelope Pantholops hodgonsonii conservation and new rangeland management policies in the western Chang Tang Nature Reserve, Tibet Autonomous Region, China—is fencing creating an impasse? Oryx 43:183–190

    Article  Google Scholar 

  • Franklin SB, Hunter JT, De Cáceres M et al (2016) Introducing the IAVS vegetation classification working group. Phytocoenologia 46:5−8

    Article  Google Scholar 

  • Frey W, Probst W (1986) A synopsis of the vegetation of Iran. In: Kürschner H (ed) Contributions to the vegetation of southwest Asia. Ludwig Reicher, Wiesbaden, pp 9–44

    Google Scholar 

  • Fu Y, Zheng Z, Yu G et al (2009) Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences 6:2879–2893

    Article  CAS  Google Scholar 

  • Gao W, Angerer JP, Fernandez-Gimenez M, Reid RS (2015) Is overgrazing a pervasive problem across Mongolia? An examination of livestock forage demand and forage availability from 2000 to 2014. In: Fernandez-Gimenez M, Batkhishig B, Fassnacht S, Wilson D (eds) Proceedings of building resilience of Mongolian rangelands. A trans-disciplinary research conference. Nutag Action and Research Institute, Ulaanbaatar, pp 35–41

  • Geerken R, Zaitchik B, Evans JP (2005) Classifying rangeland vegetation type and coverage from NDVI time series using Fourier filtered cycle similarity. Int J Remote Sens 26:5535–5554

    Article  Google Scholar 

  • Global Carex Group (2015) Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription. Bot J Linn Soc 179:1–42

    Article  Google Scholar 

  • Gong X, Chen Q, Dittert K et al (2011) Nitrogen, phosphorus and potassium nutritional status of semiarid steppe grassland in Inner Mongolia. Plant Soil 340:265–278

    Article  CAS  Google Scholar 

  • Grubov VI (2010) Schlussbetrachtung zum Florenwerk “Rasteniya Central’noj Azii” (Die Pflanzen Zentralsiens) und die Begründung der Eigenständigkeit der mongolischen Flora. Feddes Repert 121:7–13

    Article  Google Scholar 

  • Gunin PD, Slemnev NN, Tsoog S (2003) Seed regeneration of dominant plants in ecosystems of the desert zone of Mongolia: dynamics of undergrowth populations. Bot Zurnal 88:1–17

    Google Scholar 

  • Guo Q, Hu Z, Li S et al (2012) Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob Chang Biol 18:3624–3631

    Article  Google Scholar 

  • Guoying Y, Weidong L, Hongxu L et al (2002) Distribution and number of the wild bactrian camels in the world. In: Reading R, Dulamtserengiin E, Tuvdendorjiin G (eds) Ecology and conservation of Wild bactrian camels. Mongolian Conservation Coalition, Ulaanbaatar, pp 13–24

    Google Scholar 

  • Habel JC, Dengler J, Janišová M et al (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138

    Article  Google Scholar 

  • Hafner S, Unteregelsbacher S, Seeber E et al (2011) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Chang Biol 18:528–538

    Article  Google Scholar 

  • Hamasha HN, von Hagen B, Röser M (2012) Stipa (Poaceae) and allies in the Old World: molecular phylogenetics realigns genus circumscription and gives evidence on the origin of American and Australian lineages. Plant Syst Evol 298:351–367

    Article  Google Scholar 

  • Han Q, Luo G, Li C et al (2016) Simulated grazing effects on carbon emission in Central Asia. Agric For Meteorol 216:203–214

    Article  Google Scholar 

  • Hao A, Nakano Y, Yuge K, Haraguchi T (2005) Effectivenenss of environmental restoration induced by various trials for preventing desertification in Horqin arid land, China: straw net method (part 1). J Fac Agric Kyushu Univ 50:223–232

    Google Scholar 

  • Hao L, Sun G, Liu Y et al (2014) Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China. Landsc Ecol 29:1657–1673

    Article  Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12

    Article  CAS  Google Scholar 

  • Heisler-White JL, Blair JM, Kelly EF et al (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob Chang Biol 15:2894–2904

    Article  Google Scholar 

  • Hejcman M, Hejcmanová P, Pavlů V, Beneš J (2013) Origin and history of grasslands in Central Europe—a review. Grass Forage Sci 68:345–363

    Article  Google Scholar 

  • Henkin PI, Perevolotsky A, Sternberg M (2010) Long-term dominance of annual legumes after P application in a Mediterranean rangeland. Options Méditerr Ser A 45:137–140

    Google Scholar 

  • Henwood W (1998) The world’s temperate grasslands: a beleaguered biome. Parks 8:1–2

    Google Scholar 

  • Henwood W (2012) Momentum continues to grow. Temp Grassl Conserv Initiat Newsl 8:1–3

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hilbig W (1995) The vegetation of Mongolia. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Hilker T, Natsagdorj E, Waring RH, Lyapustin A, Wang Y (2014) Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob Chang Biol 20:418–428

    Article  PubMed  Google Scholar 

  • Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Article  Google Scholar 

  • Holst J, Liu C, Yao Z, Brüggemann N et al (2007) Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant Soil 296:209–226

    Article  CAS  Google Scholar 

  • Hua L, Yang S, Squires VR, Wang G (2015) An alternative rangeland management strategy in an agro-pastoral area in western China. Rangel Ecol Manag 68:1009–1118

    Article  Google Scholar 

  • Ingrisch J, Biermann T, Seeber E et al (2015) Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling. Sci Total Environ 505:1213–1224

    Article  CAS  PubMed  Google Scholar 

  • IPBES (2016) Summary for policymakers of the assessment report of the Intergovernmental Science - Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production

  • IPCC (ed) (2013) Annex I: Atlas of global and regional climate projection. Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • IPCC (ed) (2014a) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (ed) (2014b) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Janzen J (2005) Mobile livestock-keeping in Mongolia: present problems, spatial organization, interaction between mobile and sedentary population groups and perspectives for pastoral development. Senri Ethnol Stud 69:69–97

    Google Scholar 

  • Jiang L, Han X, Zhang G, Kardol P (2010) The role of plant–soil feedbacks and land-use legacies in restoration of a temperate steppe in northern China. Ecol Res 25:1101

    Article  Google Scholar 

  • John R, Chen J, Lu N, Wilske B (2009) Land cover/land use change in semi-arid inner Mongolia: 1992–2004. Environ Res Lett 4:045010

    Article  Google Scholar 

  • Kaczensky P, Ganbaatar O, von Wehrden H, Walzer C (2008) Resource selection by sympatric wild equids in the Mongolian Gobi. J Appl Ecol 45:1762–1769

    Article  Google Scholar 

  • Kaczensky P, Adiya Y, von Wehrden H et al (2014) Space and habitat use by wild Bactrian camels in the Transaltai Gobi of southern Mongolia. Biol Conserv 169:311–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser K, Miehe G, Barthelmes A et al (2008) Turf-bearing topsoils on the central Tibetan Plateau, China: pedology, botany, geochronology. Catena 3:300–311

    Article  Google Scholar 

  • Kamp J (2014) Land management: weighing up reuse of Soviet croplands. Nature 505:483

    Article  CAS  PubMed  Google Scholar 

  • Kamp J, Sheldon RD, Koshkin MA et al (2009) Post-Soviet steppe management causes pronounced synanthropy in the globally threatened sociable lapwing Vanellus gregarius. Ibis 151:452–463

    Article  Google Scholar 

  • Kamp J, Urazaliev R, Donald PF, Hölzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Conserv 144:2607–2614

    Article  Google Scholar 

  • Kamp J, Siderova TV, Salemgareev AR et al (2012) Niche separation of larks (Alaudidae) and agricultural change on the drylands of the former Soviet Union. Agric Ecosyst Environ 155:41–49

    Article  Google Scholar 

  • Kamp J, Urazaliev R, Balmford A et al (2015) Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: a comparison of land-sparing and land-sharing approaches. J Appl Ecol 52:1578–1587

    Article  Google Scholar 

  • Kamp J, Koshkin MA, Bragina TM et al (2016) Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts. Biodivers Conserv. doi:10.1007/s10531-016-1083-0

    Google Scholar 

  • Kämpf I, Hölzel N, Störrle M et al (2016a) Potential of temperate agricultural soils for carbon sequestration: a meta-analysis of land-use effects. Sci Total Environ 566:428–435

    Article  PubMed  CAS  Google Scholar 

  • Kämpf I, Mathar W, Kuzmin I et al (2016b) Post-Soviet recovery of grassland vegetation on abandoned fields in the forest steppe zone of Western Siberia. Biodivers Conserv. doi:10.1007/s10531-016-1078-x

    Google Scholar 

  • Kang L, Han X, Zhang Z, Sun OJ (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Philos Trans R Soc B 362:997–1008

    Article  Google Scholar 

  • Kaplan S, Blumberg DG, Mamedov E, Orlovsky L (2014) Land-use change and land degradation in Turkmenistan in the post-Soviet era. J Arid Environ 103:96–106

    Article  Google Scholar 

  • Karamysheva ZV, Khramtsov VN (1995) The steppes of Mongolia. Braun 17:5–79

    Google Scholar 

  • Kelemen A, Valkó O, Kröel-Dulay G et al (2016) The invasion of common milkweed (Asclepias syriaca) in sandy old-fields: is it a threat to the native flora? Appl Veg Sci 19:218–224

    Article  Google Scholar 

  • Kerven C, Robinson S, Behnke R et al (2016) A pastoral frontier: from chaos to capitalism and the re-colonisation of the Kazakh rangelands. J Arid Environ 127:106–119

    Article  Google Scholar 

  • Kier G, Kreft H, Lee TM et al (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci USA 106:9322–9327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinugasa T, Tsunekawa A, Shinoda M (2012) Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe. Oecologia 170:857–865

    Article  PubMed  Google Scholar 

  • Klein Tank AMG, Peterson TC, Quadir DA et al (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111:D16105

    Article  Google Scholar 

  • Klein J, Harte J, Zhao X (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–1179

    Article  Google Scholar 

  • Kolahi M, Sakai T, Moriya K, Makhdoum MF (2012) Challenges to the future development of Iran’s protected areas system. Environ Manag 50:750–765

    Article  Google Scholar 

  • Korotchenko I, Peregrym M (2012) Ukrainian steppes in the past, at present and in the future. In: Werger MJA, van Staalduinen M (eds) Eurasian Steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg, pp 173–196

    Chapter  Google Scholar 

  • Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Kovács-Láng E, Kröel-Dulay G, Kertész M et al (2000) Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30:385–407

    Article  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM et al (2014) Europe. In: Barros VR et al (eds) Climate change 2014: impacts, adaptation, and vulnerability Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1267–1326

    Google Scholar 

  • Kraemer R, Prishchepov AV, Müller D et al (2015) Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin lands area of Kazakhstan. Environ Res Lett 10:054012

    Article  Google Scholar 

  • Kreutzmann H (2013) The tragedy of responsibility in high Asia: modernizing traditional pastoral practices and preserving modernist worldviews. Pastoralism 3:1–11

    Article  Google Scholar 

  • Kühling I, Broll G, Trautz D (2016) Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt. Sci Total Environ 544:271–280

    Article  PubMed  CAS  Google Scholar 

  • Kurganova I, Lopes de Gerenyu V et al (2014) Carbon cost of collective farming collapse in Russia. Glob Chang Biol 20:938–947

    Article  PubMed  Google Scholar 

  • Kürschner H (1986) The subalpine thorn-cushion formations of western South Asia: ecology, structure and zonation. Proc R Soc Edinb B 89:169–179

    Google Scholar 

  • Kuzemko AA, Steinbauer MJ, Becker T et al (2016) Patterns and drivers of phytodiversity of steppe grasslands of Central Podolia (Ukraine). Biodivers Conserv. doi:10.1007/s10531-016-1060-7

    Google Scholar 

  • Lai CH, Smith AT (2003) Keystone status of plateau pikas (Ochotona curzoniae): effect of control on biodiversity of native birds. Biodivers Conserv 12:1901–1912

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lameris TK, Fijen TP, Urazaliev R et al (2016) Breeding ecology of the endemic Black Lark Melanocorypha yeltoniensis on natural steppe and abandoned croplands in post-Soviet Kazakhstan. Biodivers Conserv. doi:10.1007/s10531-015-1041-2

    Google Scholar 

  • Lauenroth WK (1998) Guanacos, spiny shrubs and the evolutionary history of grazing in the Patagonian steppe. Ecol Austral 8:211–215

    Google Scholar 

  • Lavrenko EM, Yunatov AA et al (1979) Karta rastitelnosti Mongolskoy Narodnoy Respubliki. Prosveshchenie, Moskva

    Google Scholar 

  • Lavrenko EM, Karamysheva ZV (1993) Steppes of the former Soviet Union and Mongolia. In: Coupland RT (ed) Ecosystems of the world 8B: natural grasslands: Eastern Hemisphere and résumé. Elsevier, Amsterdam, pp 3–59

    Google Scholar 

  • Lavrenko EM, Karamysheva ZV, Nikulina RI (1991) Stepi Ewraziij (European steppes). Biologiceskie Resursy i prirodnye Uslovija Mongolskoy Narodnoy Respublike 35:1–144

    Google Scholar 

  • Lehnert LW, Wesche K, Trachte K et al (2016) Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci Rep 6:24367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Houérou HN (2009) Bioclimatology and biogeography of Africa. Springer, Berlin

    Book  Google Scholar 

  • Li W, Huntsinger L (2011) China’s grassland contract policy and its impacts on herder ability to benefit in inner Mongolia: tragic feedbacks. Ecol Soc 16:1

    CAS  Google Scholar 

  • Li WJ, Li JH, Knops J et al (2009) Plant communities, soil carbon, and soil nitrogen properties in a successional gradient of sub-alpine meadows on the Eastern Tibetan Plateau of China. Environ Manag 44:755–765

    Article  Google Scholar 

  • Li G, Liu Y, Frelich LE, Sun S (2011) Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. J Appl Ecol 48:659–667

    Article  Google Scholar 

  • Li S, Verburg PH, Lv S et al (2012) Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Reg Environ Chang 12:461–474

    Article  Google Scholar 

  • Liang T, Feng Q, Yu H et al (2012) Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassl Sci 58:208–220

    Article  Google Scholar 

  • Liang W, Yang Y, Fan D et al (2015) Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982–2010. Agric For Meteorol 204:22–36

    Article  Google Scholar 

  • Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73:963–977

    Article  Google Scholar 

  • Liu YY, Evans JP, McCabe MF et al (2013) Changing climate and overgrazing are decimating Mongolian steppes. PLoS One 8:e57599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löw F, Fliemann E, Abdullaev I et al (2015) Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl Geogr 62:377–390

    Article  Google Scholar 

  • Lozano-Parra J, Maneta MP, Zulian G (2014) Climate and topographic controls on simulated pastures production in a semi-arid Mediterranean watershed with scattered tree cover. Hydrol Earth Syst Sci 18:1439–1456

    Article  Google Scholar 

  • Mahdavi P, Akhani H, ter Braak CJF (2013) Species diversity and life-form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobot 48:7–22

    Article  Google Scholar 

  • Mainjargal G, Buuveibaatar B, Boldbaatar S (2013) Morphology, diet composition, distribution and nesting biology of four Lark species in Mongolia. Mong J Biol Sci 11:3–11

    Google Scholar 

  • Mallon DP (2016) From feast to famine on the steppes. Oryx 50:189–190

    Article  Google Scholar 

  • Mallon DP, Zhigang J (2009) Grazers on the plains: challenges and prospects for large herbivores in Central Asia. J Appl Ecol 46:516–519

    Article  Google Scholar 

  • Maussion F, Scherer D, Mölg T et al (2014) Precipitation seasonality and variability over the Tibetan plateau as resolved by the high Asia reanalysis. J Clim 27:1910–1927

    Article  Google Scholar 

  • McCauley M (1976) Khrushchev and the development of Soviet agriculture. Holmes & Meier Publishers, Teaneck, New Jersey

    Book  Google Scholar 

  • Medail F, Quezel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Mo Bot Gard 84:112–127

    Article  Google Scholar 

  • Meusel H, Jäger E (1992) Vergleichende Chorologie der zentraleuropäischen Flora. Band III: Text und Kartenband. G. Fischer, Jena

    Google Scholar 

  • Meyfroidt P, Schierhorn F, Prishchepov AV et al (2016) Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob Environ Chang 37:1–15

    Article  Google Scholar 

  • Middleton N, Rueff H, Sternberg T et al (2014) Explaining spatial variations in climate hazard impacts in western Mongolia. Landsc Ecol 30:91–107

    Article  Google Scholar 

  • Miehe G, Winiger M, Böhner J, Zhang Y (2001) The climatic diagram map of Central Asia: purpose and concepts. Erdkunde 55:94–97

    Article  Google Scholar 

  • Miehe G, Miehe S, Kaiser K et al (2008) Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio 37:272–279

    Article  PubMed  Google Scholar 

  • Miehe G, Bach K, Miehe S et al (2011) Alpine steppe plant communities of the Tibetan highlands. Appl Veg Sci 14:547–560

    Article  Google Scholar 

  • Mohammat A, Wang X, Xu X et al (2013) Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agric For Meteorol 178:21–30

    Article  Google Scholar 

  • Molnár Z, Bíró M, Bartha S, Fekete G (2012) Past trends, present state and future prospects of Hungarian forest-steppes. In: Werger MJA, van Staalduinen M (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg, pp 209–252

    Chapter  Google Scholar 

  • Mucina L, Bültmann H, Dierßen K et al (2016) Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci. doi:10.1111/avsc.12257

  • Nakhutsrishvili G (2013) The vegetation of Georgia. Springer, Berlin

    Book  Google Scholar 

  • Nandintsetseg B, Shinoda M (2013) Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Nat Hazard 66:995–1008

    Article  Google Scholar 

  • Navarra A, Tubiana L (eds) (2014) Regional assessment of climate change in the Mediterranean: case studies, vol Volume 3. Springer, Dordrecht

    Google Scholar 

  • Niu S, Wu M, Han Y et al (2008) Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177:209–219

    CAS  PubMed  Google Scholar 

  • Niu S, Yang H, Zhang Z et al (2009) Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12:915–926

    Article  CAS  Google Scholar 

  • Noirfalise A (ed) (1987) Map of the natural vegetation of the member countries of the European Community and the Council of Europe: scale 1: 3 000 000, 2nd edn. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Ognev SI (1967) Mammals of the USSR and adjacent countries. Israel Program for Scientific Translations, Jerusalem

  • Olson DM, Dinerstein E, Wikranamayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Olson KA, Mueller T, Bolortsetseg S et al (2009) A mega-herd of more than 200,000 Mongolian gazelles Procapra gutturosa: a consequence of habitat quality. Oryx 43:149–153

    Article  Google Scholar 

  • Olson KA, Mueller T, Kerby JT et al (2011) Death by a thousand huts? Effects of household presence on density and distribution of Mongolian gazelles. Conserv Lett 4:304–312

    Article  Google Scholar 

  • Ooi MKJ (2012) Seed bank persistence and climate change. Seed Sci Res 22:S53–S60

    Article  Google Scholar 

  • Peart B (ed) (2008) Life in a working landscape: Towards a conservation strategy for the world’s temperate grasslands: compendium of regional templates on the status of temperate grasslands. Conservation and protection. Temperate grasslands conservation initiative, IUCN/WCPA, Vancouver, http://www.srce.com/files/App_2_Comp_of_Regional_Grassland_Templates.pdf

  • Peng S, Piao S, Ciais P et al (2010) Change in winter snow depth and its impacts on vegetation in China. Glob Chang Biol 16:3004–3013

    Google Scholar 

  • Petrick M, Wandel J, Karsten K (2013) Rediscovering the Virgin Lands: agricultural investment and rural livelihoods in a Eurasian frontier area. World Dev 43:164–179

    Article  Google Scholar 

  • Piao S, Yin G, Tan J et al (2015) Detection and attribution of vegetation greening trend in China over the last 30 years. Glob Chang Biol 21:1601–1609

    Article  PubMed  Google Scholar 

  • Pilifosova OV, Eserkepova IB, Dolgih SA (1997) Regional climate change scenarios under global warming in Kazakhstan. Clim Chang 36:23–40

    Article  CAS  Google Scholar 

  • Polyakova MA, Dembicz I, Becker T et al (2016) Scale- and taxon-dependent patterns of plant diversity in steppes of Khakassia. Biodivers Conserv. doi:10.1007/s10531-016-1093-y

    Google Scholar 

  • Porqueddu C, Ates S, Louhaichi M et al (2016) Grasslands in ‘Old World’ and ‘New World’ Mediterranean-climate zones: past trends, current status and future research priorities. Grass Forage Sci 71:1–35

    Article  Google Scholar 

  • Poschlod P, Baumann A, Karlik P (2009) Origin and development of grasslands in Central Europe. In: Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) Grasslands in Europe of high nature value. KNNV Publishing, Zeist, pp 15–26

    Chapter  Google Scholar 

  • Propastin P, Kappas M, Muratova N (2008) Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. J Environ Inform 12:75–87

    Article  Google Scholar 

  • Ptackova J (2011) Sedentarisation of Tibetan nomads in China: implementation of the Nomadic settlement project in the Tibetan Amdo area; Qinghai and Sichuan Provinces. Pastoralism 1:1–4

    Article  Google Scholar 

  • Qiu Q, Wang L, Wang K et al (2015) Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat Commun 6:10283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachkovskaya EI (2006) Vegetation. In: Republic of Kazakhstan (ed) National atlas of the Republic of Kazakhstan: natural conditions and resources, vol Volume 1. Republican Cartographic Factory, Almaty, pp 362–393

    Google Scholar 

  • Rachkovskaya EI, Bragina TM (2012) Steppes of Kazakhstan: diversity and present state. In: Werger MJA, van Staalduinen M (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg, pp 103–148

    Chapter  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13:997–1027

    Article  CAS  Google Scholar 

  • Reading RP, Bedunah D, Amgalanbaatar S (2006) Conserving biodiversity on Mongolian rangelands: implications for protected area development and pastoral uses. USDA For Serv Proc RMRS-P 9:1–17

    Google Scholar 

  • Retzer V, Reudenbach C (2005) Modelling the carrying capacity and coexistence of pika and livestock in the mountain steppe of the South Gobi, Mongolia. Ecol Model 189:89–104

    Article  Google Scholar 

  • Rhode DE, Madsen DB, Brantingham PJ, Dargye T (2007) Yaks, yak dung and prehistoric human habitation of the Tibetan plateau. Dev Quat Sci 9:205–226

    Google Scholar 

  • Richter M (2001) Vegetationszonen der Erde. Klett-Perthes, Gotha

    Google Scholar 

  • Robinson S, Milner-Gulland E (2003) Political change and factors limiting numbers of wild and domestic ungulates in Kazakhstan. Hum Ecol 31:87–110

    Article  Google Scholar 

  • Robinson S, Milner-Gulland EJ, Alimaev I (2003) Rangeland degradation in Kazakhstan during the Soviet era: re-examining the evidence. J Arid Environ 53:419–439

    Article  Google Scholar 

  • Ronnenberg K, Wesche K (2011) Effects of fertilization and irrigation on Stipa steppes in dry southern Mongolia. Plant Soil 340:239–251

    Article  CAS  Google Scholar 

  • Ronnenberg K, Wesche K, Hensen I (2008) Germination ecology of Central Asian Stipa spp.: differences among species, seed provenances, and the importance of field studies. Plant Ecol 196:269–280

    Article  Google Scholar 

  • Ruprecht E (2006) Successfully recovered grassland: a promising example from Romanian old-fields. Restor Ecol 14:473–480

    Article  Google Scholar 

  • Saiko TA, Zonn IS (2000) Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia. Appl Geogr 20:349–367

    Article  Google Scholar 

  • Schaller GB (1998) Wildlife of the Tibetan steppe. University of Chicago Press, Chicago

    Google Scholar 

  • Schierhorn F, Müller D, Beringer T et al (2013) Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob Biogeochem Cycles 27:1175–1185

    Article  CAS  Google Scholar 

  • Schroeder FG (1998) Lehrbuch der Pflanzengeographie. Quelle & Meyer, Wiesbaden

    Google Scholar 

  • Schultz J (2002) The ecozones of the world. The ecological divisions of the geosphere, 2nd edn. Springer, Berlin

    Google Scholar 

  • Schweizer M, Ayé R, Kashkarov R, Roth T (2014) Conservation action based on threatened species capture taxonomic and phylogenetic richness in breeding and wintering populations of Central Asian birds. PLoS One 9:e110511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seeber E, Miehe G, Hensen I, Yang Y, Wesche K (2015) Mixed reproduction strategy and polyploidy facilitate dominance of Kobresia pygmaea on the Tibetan Plateau. J Plant Ecol 9:87–99

    Google Scholar 

  • Shang ZH, Gibb MJ, Long RJ (2012) Effect of snow disasters on livestock farming in some rangeland regions of China and mitigation strategies—a review. Rangel J 34:89–101

    Article  Google Scholar 

  • Shang ZH, Gibb MJ, Leiber F et al (2014) The sustainable development of grassland-livestock systems on the Tibetan plateau: problems, strategies and prospects. Rangel J 36:267–296

    Article  Google Scholar 

  • Shao C, Chen J, Li L (2013) Grazing alters the biophysical regulation of carbon fluxes in a desert steppe. Environ Res Lett 8:025012

    Article  CAS  Google Scholar 

  • Singh NJ, Milner-Gulland EJ (2011) Conserving a moving target: planning protection for a migratory species as its distribution changes. J Appl Ecol 48:35–46

    Article  Google Scholar 

  • Smelansky I, Tishkov A (2012) The Steppe biome in Russia: ecosystem services, conservation status, and actual challenges. In: Werger MJA, van Staalduinen M (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg, pp 45–102

    Chapter  Google Scholar 

  • Smith AT, Foggin JM (1999) The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Anim Conserv 2:235–240

    Article  Google Scholar 

  • Sneath D (1998) State policy and pasture degradation in Inner Asia. Science 281:1147–1148

    Article  CAS  Google Scholar 

  • Sommer R, de Pauw E (2010) Organic carbon in soils of Central Asia: status quo and potentials for sequestration. Plant Soil 338:273–288

    Article  CAS  Google Scholar 

  • Soussana JF, Luscher A (2007) Temperate grasslands and global atmospheric change: a review. Grass Forage Sci 62:127–134

    Article  CAS  Google Scholar 

  • Spence L, Liancourt P, Boldgiv B et al (2014) Climate change and grazing interact to alter flowering patterns in the Mongolian steppe. Oecologia 175:251–260

    Article  PubMed  Google Scholar 

  • Sternberg T (2015) Desert boundaries: the once and future Gobi. Geogr J 181:61–72

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK et al (eds) (2013) Technical summary. In: Climate change, the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Stubbe M (1997) Naturschutz in der Mongolei: Eine nationale und internationale Herausforderung. In: Erdmann KH (ed) Internationaler Naturschutz. Springer, Berlin, pp 281–308

    Chapter  Google Scholar 

  • Stumpp M, Wesche K, Retzer V, Miehe G (2005) Impact of grazing livestock and distance from water points on soil fertility in southern Mongolia. Mt Res Dev 25:244–251

    Article  Google Scholar 

  • Sudnik-Wójcikowska B, Moysiyenko I (2012) Kurhany na „Dzikich Polach”: dziedzictwo kultury i ostoja ukraińskiego stepu. [Kurgans in the ‘Wild Field’: a cultural heritage and refugium of the Ukrainian steppe.] Wydawnictwa Uniwersytetu Warszawskiego, Warzawa

  • Takhtajan AL (1986) Floristic regions of the world. University of California Press, Berkeley

    Google Scholar 

  • Tchebakova N, Parfenova E, Soja A (2009) The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett 4:045013

    Article  Google Scholar 

  • Terbish K, Munkhbayar K, Clark EL et al (2006) Mongolia red list of reptiles and amphibians. Zoological Society of London, London

    Google Scholar 

  • The Guardian (2016) Six endangered wild horses moved to Russian reserve. http://www.theguardiancom/world/2016/mar/07/six-endangered-wild-horses-moved-to-russian-reserve

  • Thuiller W, Lavorel S, Araujo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toleubayev K, Jansen K, van Huis A (2007) Locust control in transition: the loss and reinvention of collective action in post-Soviet Kazakhstan. Ecol Soc 12:38

    Google Scholar 

  • Török P, Vida E, Deák B, Lengyel S, Tóthmérész B (2011) Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers Conserv 20:2311–2332

    Article  Google Scholar 

  • Tzonev R, Dimitrov M, Roussakova V (2006) The Western-Pontic steppe vegetation in Bulgaria. Haquetia 5:5–23

    Google Scholar 

  • Upton C (2005) Institutions in a pastoral society: processes of formationa and transformation in post-socialist Mongolia. CSSAAME 25:584–599

    Google Scholar 

  • Valkó O, Török P, Deák B, Tóthmérész B (2014) Prospects and limitations of prescribed burning as a management tool in European grasslands. Basic Appl Ecol 15:26–33

    Article  Google Scholar 

  • van Dierendonck MC, Wallis de Vries MF (1996) Ungulate reintroductions: experiences with the takhi or Przewalski horse (Equus ferus przewalskii) in Mongolia. Conserv Biol 10:728–740

    Article  Google Scholar 

  • Vassilev K, Apostolova I (2013) Bulgarian steppic vegetation: an overview. In: Baumbach H, Pfützenreuter S (eds) Steppenlebensräume Europas: Gefährdung, Erhaltungsmaßnahmen und Schutz. Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz, Erfurt, pp 191–200

    Google Scholar 

  • von Wehrden H, Hanspach J, Ronnenberg K, Wesche K (2010) The inter-annual climatic variability in Central Asia: a contribution to the discussion on the importance of environmental stochasticity in drylands. J Arid Environ 74:1212–1215

    Article  Google Scholar 

  • von Wehrden H, Wesche K, Chuluunkhuyag O, Fust P (2015) Correlation of trends in cashmere production and declines of large wild mammals: response to Berger et al. 2013. Conserv Biol 29:286–289

    Article  Google Scholar 

  • Vostokova EA, Gunin PD (eds) (2005) Ecosystems of Mongolia: Atlas. Russian Academy of Sciences, Moscow

    Google Scholar 

  • Wakefield S, Knowles J, Zimmermann W, van Dierendonck M (2002) Status and action plan for the Przewalski’s horse (Equus ferus przewalskii). In: Moehlman PD (ed) Equids: zebras, asses and Horses. IUCN, Gland, pp 82–92

    Google Scholar 

  • Walker DA, Raynolds MK, Daniëls FJA et al (2005) The Circumpolar Arctic vegetation map. J Veg Sci 16:267–282

    Article  Google Scholar 

  • Walker DA, Daniëls FJA, Alsos I et al (2016) Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data. Environ Res Lett 11:055005

    Article  Google Scholar 

  • Walter H, Breckle SW (1985) Ecological systems of the geobiosphere. Vol. 1. Ecological principles in global perspective. Springer, Berlin

    Book  Google Scholar 

  • Walter H, Breckle SW (1999) Vegetation und Klimazonen. Ulmer, Stuttgart

    Google Scholar 

  • Walter H, Breckle SW (eds) (2004) Ökologie der Erde. Band 2: Spezielle Ökologie der tropischen und subtropischen Zonen. 3rd edn. Spektrum Akademischer Verlag, München

    Google Scholar 

  • Wan Y-f, Gao Q-z, Li Y et al (2014) Change of snow cover and its impact on alpine vegetation in the source regions of large rivers on the Qinghai-Tibetan Plateau, China. Arct Antarct Alp Res 46:632–644

    Article  Google Scholar 

  • Wang Y, Wesche K (2016) Complex responses of vegetation and soil to livestock grazing in Chinese grasslands: a review of Chinese literature. Biodivers Conserv. doi:10.1007/s10531-015-1034-1

    Google Scholar 

  • Wang X, Chen F, Hasi E, Li J (2008) Desertification in China: an assessment. Earth Sci Rev 88:188–206

    Article  Google Scholar 

  • Wang MP, Zhao CZ, Long RJ, Yang YH (2010) Rangeland governance in China: overview, impacts on Sunan county in Gansu province and future options. Rangel J 32:155–163

    Article  CAS  Google Scholar 

  • Wang Y, Wang J, Li S, Qin D (2014) Vulnerability of the Tibetan pastoral systems to climate and global change. Ecol Soc 19:8

    Article  Google Scholar 

  • Ward D, Saltz D, Rowen M, Schmidt I (1999) Effects of grazing by re-introduced Equus hemionus on the vegetation in a Negev desert erosion cirque. J Veg Sci 10:579–586

    Article  Google Scholar 

  • Wen L, Dong S, Li et al (2013) The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant Soil 368:329–340

    Article  CAS  Google Scholar 

  • Werger MJA, van Staalduinen M (eds) (2012) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg

    Google Scholar 

  • Wesche K, Nadrowski K, Retzer V (2007) Habitat engineering under dry conditions: the impact of pikas (Ochotona pallasi) on southern Mongolian mountain steppes. J Veg Sci 18:665–674

    Article  Google Scholar 

  • White RP, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems. Grassland ecosystems. World Resource Institute, Washington

    Google Scholar 

  • Wiesmeier M, Munro S, Barthold F et al (2015) Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China. Glob Chang Biol 21:3836–3845

    Article  PubMed  Google Scholar 

  • Winkler D (2008) Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 62:291–305

    Article  Google Scholar 

  • Wit P, Vegten JK (1998) Landscape: human interactions in the Hustain Nuruu Mountain Steppe reserve. In: Dömpke S, Succow M (eds) Cultural landscapes and nature conservation in northern Eurasia. Naturschutzbund Deutschland, Bonn, pp 248–257

    Google Scholar 

  • Wright C, De Beurs K, Akhmadieva Z, Groisman PY, Henebry G (2009) Reanalysis data underestimate significant changes in growing season weather in Kazakhstan. Environ Res Lett 4:045020

    Article  Google Scholar 

  • Wu X, Li P, Jiang C et al (2014) Climate changes during the past 31 years and their contribution to the changes in the productivity of rangeland vegetation in the Inner Mongolian typical steppe. Rangel J 36:519–526

    Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    Article  CAS  PubMed  Google Scholar 

  • Xia C, Cao J, Zhang H et al (2014) Reintroduction of Przewalski’s horse (Equus ferus przewalskii) in Xinjiang, China: the status and experience. Biol Conserv 177:142–147

    Article  Google Scholar 

  • Yang X, Zhang K, Jia B, Ci L (2005) Desertification assessment in China: an overview. J Arid Environ 63:517–531

    Article  Google Scholar 

  • Yang Y, Fang J, Fay PA, Bell JE, Ji C (2010) Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys Res Lett 37:L15072

    Google Scholar 

  • Yang Z-p, Gao J-x, Zhao L, Xu X-l, Ouyang H (2013) Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau. Plant Soil 367:687–700

    Article  CAS  Google Scholar 

  • Yang Y, Guan H, Shen M, Liang W, Jiang L (2015) Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob Chang Biol 21:652–665

    Article  PubMed  Google Scholar 

  • Yesdauletova A, Yesdauletov A, Aliyeva S, Kakenova G (2015) Famine and Kazakh Society in the 1930s. Anthropologist 22:537–544

    Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA 107:22151–22156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue T-X, Zhao N, Ramsey RD et al (2013) Climate change trend in China, with improved accuracy. Clim Chang 120:137–151

    Article  Google Scholar 

  • Zakh VA, Ryabogina NE, Chlachula J (2010) Climate and environmental dynamics of the mid-to late Holocene settlement in the Tobol-Ishim forest-steppe region, West Siberia. Quat Int 220:95–101

    Article  Google Scholar 

  • Zech W, Schad P, Hintermaier-Erhard G (2014) Böden der Welt. Springer, Berlin

    Book  Google Scholar 

  • Zeder MA (2008) Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc Natl Acad Sci USA 105:11597–11604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemmrich A, Hilbig W, Oyuunchimeg D (2010) Plant communities along an elevation gradient under special consideration of grazing in Western Mongolia. Phytocoenologia 40:91–115

    Article  Google Scholar 

  • Zhang ZH, Li XY, Jiang ZY et al (2013) Changes in some soil properties induced by re-conversion of cropland into grassland in the semiarid steppe zone of Inner Mongolia, China. Plant Soil 373:89–106

    Article  CAS  Google Scholar 

  • Zhang Z, Wang X, Zhao X et al (2014) A 2010 update of National Land Use/Cover Database of China at 1:10,0000 scale using medium spatial resolution satellite images. Remote Sens Environ 149:142–154

    Article  Google Scholar 

  • Zhao X, Hu H, Shen H et al (2014) Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landsc Ecol 30:1599–1611

    Article  Google Scholar 

  • Zheng Y, Xie Z, Jiang L et al (2006) Vegetation responses along environmental gradients in the Ordos plateau, China. Ecol Res 21:396–404

    Article  Google Scholar 

  • Zhong Z, Wang D, Zhu H et al (2014) Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity. Ecology 95:1055–1064

    Article  PubMed  Google Scholar 

  • Zhu TC (1993) Grasslands of China. In: Coupland RT (ed) Ecosystems of the world 8B: Natural grasslands—Eastern hemisphere and résumé. Elsevier, Amsterdam, pp 61–82

    Google Scholar 

  • Zlotin RI, Khodashova K (1980) The role of animals in biological cycling of forest-steppe ecosystems. Hutchinson and Ross, Dowden

    Google Scholar 

  • Zohary M (1973) Geobotanical foundations of the Middle East, vol 2. G. Fischer, Stuttgart

    Google Scholar 

  • Zólyomi B, Fekete G (1994) The Pannonian loess steppe: differentiation in space and time. Abstr Bot 18:29–41

    Google Scholar 

Download references

Acknowledgments

Our sincere thanks go to David Hawksworth for giving us the opportunity to put together an exciting special issue and for his patience during the process. He also provided very helpful comments on an earlier version of this paper. We thank Aiko Huckauf for polishing our English and Milan Chytrý, Olga Demina, Wanja Mathar, Alireza Naqinezhad, Jens Oldeland, Mustafa Sözen and Yun Wang for providing photos. K.W. extends special thanks to Tatiana Bragina and Ilya Smelyanski from the IUCN Specialist Group on Holarctic steppes; his work feeding into this paper was partly financed by the German Research Foundation (DFG), by the German Federal Ministry of Education and Research (BMBF: CAME-PaDeMoS and GLUES-Kulunda initiatives) and by the International Fund for Agricultural Development. J.K. was funded by the BMBF within their Sustainable Land Management funding framework (Project SASCHA, funding reference 01LL0906A) and by the Volkswagen Foundation (funding reference A112025).

Authors contribution

This synthesis was coordinated by K.W. and J.D., with K.W. drafting the majority of sections and preparing the maps together with J.T, while J.D. contributed the sections on steppe definition and subdivision. Regional aspects were mainly contributed by P.T. and J.D. for the European region, J.K. for the Middle Asian region, K.W. and J.T. for the Mongolian and Tibetan regions and D.A. and J.D. for the Mediterranean region. All authors critically revised the whole manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Wesche.

Additional information

Communicated by David Hawksworth.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wesche, K., Ambarlı, D., Kamp, J. et al. The Palaearctic steppe biome: a new synthesis. Biodivers Conserv 25, 2197–2231 (2016). https://doi.org/10.1007/s10531-016-1214-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1214-7

Keywords

Navigation