Skip to main content

Advertisement

Log in

Biodiversity surrogate effectiveness in two habitat types of contrasting gradient complexity

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Enormous and increasing loss of biodiversity requires evaluation of surrogate taxa as a tool for conservation biology and new reserve selection, in spite of the fact that this approach has become questionable. The aim of this study was to assess the effect of gradient complexity on species richness and community composition among three taxonomic groups. We compared efficiency of vascular plants to indicate diversity of cryptogams (bryophytes, lichens) and snails in two contrasting habitat types (treeless fens and forests) within the same geographic region. We examined correlation of their species richness (Spearman rank correlation), community composition (Bray–Curtis similarity, Mantel test) and their responses to environmental variables (detrended and canonical correspondence analysis). We also focused on Red List species. We found that spatial congruence among studied taxa was affected by habitat type, however vascular plants were good indicator of snail biodiversity in both habitats. Nevertheless, all significant positive correlations of species richness were associated with the congruence in main environmental gradients. Although there was a consistency in significantly positive cross-taxon correlation in community similarity, the congruence was insufficient for conservation purposes. Furthermore we confirmed the necessity of integration of at-risk species in conservation planning as Red List species were poor indicators for total species richness and vice versa. We suggest the complementation of existing reserve network with small-scale protected areas focused on conservation of at-risk ecosystems, communities or species. In this study vascular plants were not found as a sufficient indicator for fine-filter conservation of other taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anand M, Laurence S, Rayfield B (2005) Diversity relationship among taxonomic groups in recovering and restored forests. Conserv Biol 19:955–962

    Article  Google Scholar 

  • Aubry S, Labaune C, Magnin F, Roche P, Kiss L (2006) Active and passive dispersal of an invading land snail in Mediterranean France. J Anim Ecol 75:802–813

    Article  PubMed  Google Scholar 

  • Azovsky AI (2002) Size-dependent species–area relationships in benthos: is the world more diverse for microbes? Ecography 25:273–282

    Article  Google Scholar 

  • Beran L, Juřičková L, Horsák M (2005) Mollusca (měkkýši), pp 69–74. In: Farkač J, Král D, Škorpík M (eds) Červený seznam ohrožených druhů České republiky. Bezobratlí (Red List of threatened species in the Czech Republic. Invertebrates). Agentura ochrany přírody a krajiny ČR, Praha. [in Czech]

  • Calmer Y, Stoller-Cavari L (2006) Comparing environmental and biological surrogates for biodiversity at a local scale. Isr J Ecol Evol 52:11–27

    Google Scholar 

  • Cameron RAD (1998) Dilemmas of rarity: biogeographical insights and conservation priorities for land Mollusca. J Conchol 2:51–60 (special publication)

    Google Scholar 

  • Cameron RAD, Poktryszko BM, Horsák M (2010) Land snail faunas in Polish forests: patterns of richness and composition in a post-glacial landscape. Malacologia 53:77–134

    Article  Google Scholar 

  • Cernohorsky NH, Horsák M, Cameron RAD (2010) Land snail species richness and abundance at small scales: the effect of distinguishing between live individuals and empty shells. J Conchol 40:233–241

    Google Scholar 

  • Chytrý M, Vicherek J (1995) Lesní vegetace Národního parku Podyjí/Thayatal. Die Waldvegetation des Nationalparks Podyjí/Thayatal (Forest vegetation of National parks Podyjí/Thayatal). Academia, Praha. [in Czech and German]

  • Danihelka J, Chrtek J Jr, Kaplan Z (2012) Checklist of vascular plants of the Czech Republic. Preslia 84:647–811

    Google Scholar 

  • Dörge N, Walther C, Beinlich B, Plachter H (1999) The significance of passive transport for dispersal in terrestrial snails (Gastropoda, Pulmonata). Zeitschrift für Ökologie und Naturschutz 8:1–10

    Google Scholar 

  • Fattorini S (2010) Biotope prioritisation in the Central Apennines (Italy): species rarity and cross-taxon congruence. Biodivers Conserv 19:3413–3429

    Article  Google Scholar 

  • Fattorini S, Dennis RLH, Cook LM (2011) Conserving organisms over large regions requires multi-taxa indicators: one taxon’s diversity-vacant area is another taxon’s diversity zone. Biol Conserv 144:1690–1701

    Article  Google Scholar 

  • Feráková V, Maglocký Š, Marhold K (2001) Červený zoznam papraďorastov a semenných rastlín Slovenska (Red List of ferns and vascular plants of Slovakia). Suppl.: 44–77. In: Baláž D, Marhold K, Urban P (eds) Červený zoznam rastlín a živočíchov Slovenska (Red List of plants and animals of Slovakia). Ochrana Prírody 20. [in Slovak]

  • Fontaine B, Gargominy O, Neubert E (2007) Priority sites for conservation of land snails in Gabon: testing the umbrella species concept. Divers Distrib 13:725–734

    Article  Google Scholar 

  • Gioria M, Schaffers A, Bacaro G, Feehan J (2010) The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol Conserv 143:1125–1133

    Article  Google Scholar 

  • Gittenberger E, Groenenberg DSJ, Kokshoorn B, Preece RC (2006) Molecular trails from hitch-hiking snails. Nature 439:409

    Article  PubMed  CAS  Google Scholar 

  • Grulich V (2012) Red List of vascular plants of the Czech Republic: 3rd edition. Preslia 84:631–645

    Google Scholar 

  • Hájek M, Hekera P, Hájková P (2002) Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobot 37:205–224

    Article  Google Scholar 

  • Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect Plant Ecol Evol Syst 8:97–114

    Article  Google Scholar 

  • Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011a) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755

    Article  Google Scholar 

  • Hájek M, Roleček J, Cottenie K, Kintrová K, Horsák M, Poulíčková A, Hájková P, Fránková M, Dítě D (2011b) Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. J Biogeogr 38:1683–1693

    Article  Google Scholar 

  • Hess GR, Bartel RA, Leidner AK, Rosenfeld MK, Rubino MJ, Snider SB, Ricketts TH (2006) Effectiveness of biodiversity indicators varies with extent, grain and region. Biol Conserv 132:448–457

    Article  Google Scholar 

  • Horsák M (2003) How to sample mollusc communities in mires easily. Malacol Bohemoslov 2:11–14

    Google Scholar 

  • Horsák M, Hájek M (2003) Composition and species richness of molluscan communities in relation to vegetation and water chemistry in the western Carpathian spring fens: the poor-rich gradient. J Molluscan Stud 69:349–357

    Article  Google Scholar 

  • Horsák M, Hájek M, Tichý L, Juřičková L (2007) Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecol 32:161–171

    Article  Google Scholar 

  • Horsák M, Hájek M, Spitale D, Hájková P, Dítě D, Nekola JC (2012) The age of island-like habitats impacts habitat specialist species richness. Ecology 93:1106–1114

    Article  PubMed  Google Scholar 

  • Horsák M, Juřičková L, Picka J (2013) Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics. Kabourek, Zlín. [in Czech and English]

  • Howard PC, Viscanic P, Davenport TRB, Kigenyi FW, Baltzer M, Dickinson CJ, Lwanga JS, Matthews RA, Balmford A (1998) Complementarity and the use of indicator groups reserve selection in Uganda. Nature 394:472–475

    Article  CAS  Google Scholar 

  • Hraško J, Linkeš V, Němeček J, Novák P, Šály R, Šurina B (1991) Morfogenetický klasifikační systém pôd ČSFR (Morphogenetic classification system of soils in ČSFR). VÚPÚ, Bratislava. [in Slovak]

  • Hylander K (2007) The conservation ecology of cryptogams. Biol Conserv 135:311–314

    Article  Google Scholar 

  • Kareiva P, Marvier M (2003) Conserving biodiversity coldspots. Am Sci 91:344–351

    Article  Google Scholar 

  • Kasigwa PF (1999) Dispersion factors in the arboreal snail Sitala jenynsi (Gastropoda: Ariophantidae). S Afr J Zool 34:145–153

    Google Scholar 

  • Kubinská A, Janovicová K, Šoltés R (2001) Červeny zoznam machorastov Slovenska (Red List of Bryophytes of Slovakia). Suppl.: 31–43. In: Baláž D, Marhold K, Urban P (eds) Červený zoznam rastlín a živočíchov Slovenska (Red List of plants and animals of Slovakia). Ochrana Prírody 20. [in Slovak]

  • Kučera J, Váňa J, Hradílek Z (2012) Bryophyte flora of the Czech Republic: updated checklist and Red List and a brief analysis. Preslia 84:813–850

    Google Scholar 

  • Larsen FW, Bladt J, Rahbek C (2009) Indicator taxa revisited: useful for conservation planning? Divers Distrib 15:70–79

    Article  Google Scholar 

  • Lawler JJ, White D (2008) Assessing the mechanisms behind successful surrogates for biodiversity in conservation planning. Anim Conserv 11:270–280

    Article  Google Scholar 

  • Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen NA, Stork NE (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76

    Article  CAS  Google Scholar 

  • Legendre P, Dale MRT, Fortin MJ, Gurevitch J, Hohn M, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Liška J, Palice Z, Slavíková Š (2008) Checklist and Red List of lichens of the Czech Republic. Preslia 80:151–182

    Google Scholar 

  • Lockwood M, Worboys GL, Kothari A (eds) (2006) Managing protected areas: a global guide. Earthscan, London

    Google Scholar 

  • Lovell S, Hamer M, Slotow R, Herbert D (2007) Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol Conserv 139:113–125

    Article  Google Scholar 

  • Ložek V (1956) Klíč československých měkkýšů (Key to Czechoslovak molluscs). Vydavateľstvo SAV, Bratislava. [in Czech]

  • Maccherini S, Bacaro G, Favilli L, Piazzini S, Santi E, Marignani M (2009) Congruence among vascular plants and butterflies in the evaluation of grassland restoration success. Acta Oecol 35:311–317

    Article  Google Scholar 

  • Magurran A (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Margules CR, Pressey RL, Williams PH (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. J Biosci 27:309–326

    Article  PubMed  CAS  Google Scholar 

  • McMullan-Fisher SJM, Kirkpatrick JB, May TW, Pharo EJ (2009) Surrogates for macrofungi and mosses in reservation planning. Conserv Biol 24:730–736

    Article  PubMed  Google Scholar 

  • Moritz C, Richardson KS, Ferrier S, Monteith GB, Stanisic J, Williams SE, Whiffin T (2001) Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proc R Soc B 268:1875–1881

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niemelä J, Baur B (1998) Threatened species in a vanishing habitat: plants and invertebrates in calcareous grasslands in the Swiss Jura mountains. Biodivers Conserv 7:1407–1416

    Article  Google Scholar 

  • Nordén B, Paltto H, Götmark F, Wallin K (2007) Indicators of biodiversity, what do they indicate?—lessons for conservation of cryptogams in oak-rich forest. Biol Conserv 135:369–379

    Article  Google Scholar 

  • Pearman PB, Weber D (2007) Common species determine richness patterns in biodiversity indicator taxa. Biol Conserv 138:109–119

    Article  Google Scholar 

  • Pearson DL, Carroll SS (1999) The influence of spatial scale on cross-taxon congruence patterns and prediction accuracy of species richness. J Biogeogr 26:1079–1090

    Article  Google Scholar 

  • Pimm SL, Lawton JH (1998) Planning for biodiversity. Science 279:2068–2069

    Article  CAS  Google Scholar 

  • Pišút I, Guttová A, Lackovičová A, Lisická E (2001) Červený zoznam lišajníkov Slovenska (Red List of lichens of Slovakia). Suppl.: 23–30. In: Baláž D, Marhold K, Urban P (eds) Červený zoznam rastlín a živočíchov Slovenska (Red List of plants and animals of Slovakia). Ochrana Prírody 20. [in Slovak]

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337

    Article  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH (1999) The gaps between theory and practice in selecting nature reserves. Conserv Biol 13:484–492

    Article  Google Scholar 

  • Reyers B, van Jaarsveld AS (2000) Assessment techniques for biodiversity surrogates. S Afr J Sci 96:405–408

    Google Scholar 

  • Reyers B, Wessels KJ, van Jaarsveld AS (2002) An assessment of biodiversity surrogacy options in the Limpopo Province of South Africa. Afri Zool 37:185–195

    Google Scholar 

  • Ricketts TH, Dinerstein E, Olson DO, Loucks C (1999) Who’s where in North America? Patterns of species richness and the utility of indicator taxa for conservation. Bioscience 49:369–381

    Article  Google Scholar 

  • Rodrigues ASL et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  PubMed  CAS  Google Scholar 

  • Sætersdal M, Gjerde I, Blom HH, Ihlen PG, Myreseth EW, Pommeresche R, Skartveit J, Solhøy T, Aas O (2003) Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails, and wood living polypore fungi in a northern forest. Biol Conserv 115:21–31

    Article  Google Scholar 

  • Santi E et al (2010) Simple to sample: vascular plants as surrogate group in a nature reserve. J Nat Conserv 18:2–11

    Article  Google Scholar 

  • Similä M, Kouki J, Mönkkönen M, Sippola A, Huhta E (2006) Co-variation and indicators of species diversity: can richness of forest-dwelling species be predicted in northern boreal forests? Ecol Ind 6:686–700

    Article  Google Scholar 

  • Slotow R, Hamer M (2000) Biodiversity research in South Africa: comments on current trends and methods. S Afr J Sci 96:222–224

    Google Scholar 

  • Smith GT, Kark S, Schneider CJ, Wayne RK, Moritz C (2001) Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends Ecol Evol 16:431

    Article  Google Scholar 

  • Su JC, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18:167–173

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002). CANOCO reference manual and Canodraw for Windows user's guide. Software for canonical community ordination (ver. 4.5). Biometris, Wageningen

  • van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  • Weaver JC (1995) Indicator species and scale of observation. Conserv Biol 9:939–942

    Article  Google Scholar 

  • Westhoff V, van der Maarel E (1978) The Braun–Blanquet approach. In: Whittaker RH (ed) Classification of plant communities. W. Junk, The Hague, pp 289–399

    Google Scholar 

  • Williamson M, Gaston KJ, Lonsdale WM (2001) The species-area relationship does not have an asymptote! J Biogeogr 28:827–830

    Article  Google Scholar 

  • Wolters V, Bengtsson J, Zaitsev AS (2006) Relationship among the species richness of different taxa. Ecology 87:1886–1895

    Article  PubMed  Google Scholar 

  • Zelený D, Chytrý M (2007) Environmental control of the vegetation pattern in deep river valleys of the Bohemian Massif. Preslia 79:205–222

    Google Scholar 

Download references

Acknowledgments

We are much grateful to Milan Chytrý and Michal Hájek for providing the vegetation data and for their valuable comments and essential improvements of the previous version. Preparation of the manuscript was funded by the Czech Ministry of Education, Youth and Sports MUNI/A/0757/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Myšák.

Additional information

Communicated by David L. Hawksworth.

Appendices

Appendix 1

See Table 4

Table 4 List of all recorded forest species in all 43 studied plots

Appendix 2

See Table 5

Table 5 List of all recorded fen species in all 43 studied plots

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myšák, J., Horsák, M. Biodiversity surrogate effectiveness in two habitat types of contrasting gradient complexity. Biodivers Conserv 23, 1133–1156 (2014). https://doi.org/10.1007/s10531-014-0654-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0654-1

Keywords

Navigation