Skip to main content
Log in

Mitochondrial D-loop phylogeny signals two native Iberian red deer (Cervus elaphus) Lineages genetically different to Western and Eastern European red deer and infers human-mediated translocations

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

An Erratum to this article was published on 30 January 2014

Abstract

Native red deer (Cervus elaphus) in Western Europe might at least partially derive from refugial populations which survived in the Iberian Peninsula during the last glacial maximum, and that expanded northwards at the onset of the Holocene. However, the phylogeny and genetic structure of red deer populations in the Iberian Peninsula are still poorly known. This study was planned, in a first step, to reconstruct the phylogenetic relationship of the main red deer populations extant in Spain by the analyses of an extensive sample of mitochondrial DNA sequences. Results indicate that sequences from these populations can be assigned to one of two deeply divergent mtDNA lineages (South-Western and Central-Eastern) with molecular divergence nearby the 2 %. In each lineage were respectively found sixteen and thirteen different haplotypes. It was evidenced that they may be allopatrically distributed in Spain with 86.6 % sequences of the South-Western lineage at the South-Western side and the 65 % sequences of Central-Eastern lineage in the Central-Eastern side. These mitochondrial lineages might have originated in two distinct refugial populations during the last glacial maximum. Genetic data also reveal instances of admixture between native populations and translocated European red deer, which belong to at least three distinct subspecies. Gene introgression was mainly due to red deer from Western European populations. The genetic contribution of red deer translocated from Eastern Europe (C. e. hippelaphus) or North Africa (C. e. corsicanus, C. e. barbarus) was apparently less deep. The extant phylogenetic relationship and evidences of genetic admixture suggest that sound conservation actions for the native Iberian red deer should severely restrict the introduction of alien red deer and, when possible, avoid admixture between the South-Western and Central-Eastern mtDNA lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arroyo J, Carrión JS, Hampe A, Jordano P (2004) La distribución de las especies a diferentes escalas espacio-temporales. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF S.A., Madrid, pp 27–67

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York

    Book  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Bernard T, Gale RE, Linch DC (1996) Analysis of granulocyte colony stimulating factor receptor isoforms, polymorphisms and mutations in normal haemopoietic cells and acute myeloid leukaemia blasts. Br J Haematol 93(3):527–533

    Article  CAS  PubMed  Google Scholar 

  • Branco M, Monnerot M, Ferrand N, Templeton AR (2002) Postglacial dispersal of the european rabbit (Oryctolagus cuniculus) on the Iberian Peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56:792–803

    PubMed  Google Scholar 

  • Cabrera A (1914) Fauna Ibérica. Mamíferos: Género Cervus. Museo Nacional de Ciencias Naturales, Madrid, pp 336–344

    Book  Google Scholar 

  • Carranza J, Martínez JG, Sánchez-Prieto C, Fernández-García JL, Sánchez-Fernández B, Álvarez-Álvarez R, Valencia J, Alarcos S (2003) Game species: extinctions hidden by census numbers. Anim Biodivers Conserv 26(2):81–84

    Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval LG, Schneider S (2005) ARLEQUIN ver. 3.0. A software for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Fernández-García JL (2012) The endangered Dama dama mesopotamica Brooke, 1875: genetic variability, allelic loss and hybridization signals. Contrib Zool 81(4):223–233

    Google Scholar 

  • Feulner PGD, Bielfeldt W, Zachos FE, Bradvarovic J, Eckert I, Hartl GB (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93:299–306

    Article  CAS  PubMed  Google Scholar 

  • Forster P, Torroni A, Renfrew C, Rhol A (2001) Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. Mol Biol Evol 18:1864–1881

    Article  CAS  PubMed  Google Scholar 

  • Geist V (1998) Deer of the world: their evolution, behaviour, and ecology. Swan Hill Press, Shrewsbury

    Google Scholar 

  • Grady JM, Quattro JM (1999) Using Character Concordance to define taxonomic and conservation Units. Conserv Biol 13(5):1004–1007

    Article  Google Scholar 

  • Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservations. J Hered 89:415–426

    Article  Google Scholar 

  • Groves CP, Grubb P (1987) Relationships of living deer. In: Wemmer C (ed) Biology and management of the Cervidae. Smithsonian Institute Press, Washington

    Google Scholar 

  • Hajji GM, Zachos FE, Charfi-Cheikrouha F, Hartl GB (2007) Conservation genetics of the imperilled Barbary red deer in Tunisia. Anim Conserv 10:229–235

    Article  Google Scholar 

  • Hajji GM, Charfi-Cheikrouha F, Lorenzini R, Vigne J-D, Hartl GB, Zachos FE (2008) Phylogeography and founder effect of the endangered Corsican red deer (Cervus elaphus corsicanus). Biodivers Conserv 17:659–673

    Article  Google Scholar 

  • Hartl GB, Zachos FE, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. C R Biol 326:S37–S42

    Article  PubMed  Google Scholar 

  • Hartl GB, Zachos FE, Nadlinger K, Ratkiewicz M, Klein F, Lang G (2005) Allozyme and mitochondrial DNA analysis of French red deer (Cervus elaphus) populations: genetic structure and its implications for management and conservation. Mamm Biol 70:24–34

    Article  Google Scholar 

  • Hewitt GM (2004) The structure of biodiversity: insights from molecular phylogeography. Front Zool I(4):1–16

    Google Scholar 

  • Hmwe SS, Zachos FE, Sale JB, Rose HR, Hartl GB (2006) Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J Zool 270:479–487

    Article  Google Scholar 

  • Kuwayama R, Ozawa T (2000) Phylogenetic relationships among European red deer, Wapiti, and Sika deer inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 15(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Long JD (2003) Introduced mammals of the world: their history, distribution and influence. CABI Publishing, Oxon

    Google Scholar 

  • Ludt CJ, Shroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083

    Article  CAS  PubMed  Google Scholar 

  • Martínez JG, Carranza J, Fernández-García JL, Sánchez-Prieto C (2002) Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J Wildl Manag 66:1273–1282

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Meunier K (1984) Der Spanische Rothirsch, ein sehr altes Eiszeitrelikt. Jagd und Hege 16:9–12

  • Millar SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  Google Scholar 

  • Moritz C (1994) Defining “evolutionary significant units” for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Naderi S, Rezaei H-R, Taberlet P, Zundel S, Rafat S-A et al (2007) Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One 2(10):e1012

    Article  PubMed Central  PubMed  Google Scholar 

  • Niedziałkowska M, Jędrzejewska B, Honnen A, Thurid O, Sidorovich VE, Perzanowski K, Skog A, Hartl G, Borowik T, Bunevich A, Lang J, Zachos F (2011) Molecular biogeography of red deer Cervus elaphus from Eastern Europe: insights from mitochondrial CNA sequences. Acta Theriol 56:1–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Niedziałkowska M, Jędrzejewska B, Wojcik JM, Goodman SJ (2012) Genetic structure of red deer population in northeastern Poland in relation to the history of human interventions. J Wildlife Manag 76:1264–1276

    Article  Google Scholar 

  • Nussey DH, Pemberton J, Donalds A, Kruuk LEB (2006) Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity 97:56–65

    Article  CAS  PubMed  Google Scholar 

  • Palsbøll PJ, Besrube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22(1):11–16

    Article  PubMed  Google Scholar 

  • Pérez T, Albornoz J, Nores C, Domínguez A (1998) Evaluation of genetic variability in introduced populations of red deer (Cervus elaphus) using DNA fingerprinting. Hereditas 129:85–89

    Article  PubMed  Google Scholar 

  • Pérez-Espona S, Pérez -Barbería FJ, Goodall-Copestake WP, Jiggins CD, Gordon IJ, Pemberton JM (2009) Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey. Heredity 102:199–210

    Article  PubMed  Google Scholar 

  • Pitra C, Fickel J, Meijaard E, Groves PC (2004) Evolution and Phylogeny of old world deer. Mol Phylogenet Evol 33:880–895

    Article  CAS  PubMed  Google Scholar 

  • Polziehn RO, Strobeck C (2002) A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol Phylogenet Evol 22(3):342–356

    Article  CAS  PubMed  Google Scholar 

  • Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Operations Res Lett 31:12–20

    Article  Google Scholar 

  • Posada D, Crandal KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16(1):37–45

    Article  PubMed  Google Scholar 

  • Randi E (2005) Management of wild ungulates populations in Italy: captive-breeding hybridisation and genetic consequences of translocations. Vet Res Commun 29(Suppl 2):71–75

    Article  PubMed  Google Scholar 

  • Randi E, Mucci N, Claro-Hergueta F, Bonnet A, Douzery EJP (2001) A mitochondrial DNA CR phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim Conserv 4:1–11

    Article  Google Scholar 

  • Randi E, Alves C, Carranza J, Milosevic-Zlatanovic S, Sofougaris A (2004) Phylogeography of roe deer (Capreoplus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics. Mol Ecol 13:3071–3083

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140

    Article  PubMed  Google Scholar 

  • Skog A et al (2009) Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr 36:66–77

    Article  Google Scholar 

  • Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev 36:251–265

    Article  Google Scholar 

  • Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N (2008) Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev 27:714–733

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the CR of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. http://www.megasoftware.net/

    Google Scholar 

  • Trense W (1989) The big game of the world. Paul Parey, Hamburg

    Google Scholar 

  • Troy CS, MacHugh DE, Bailey JF, Magee DA, Loftus RT, Cunningham P, Chamberlain AT, Sykes BC, Bradley DG (2001) Genetic evidence for near-Eastern origins of European cattle. Nature 410:1088–1091

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

  • Zachos FE, Hartl GB (2011) Phylogeography, population genetics and conservation of the European red deer Cervus elaphus. Mamm Rev 41(2):138–150

    Article  Google Scholar 

  • Zachos F, Hartl GB, Apollonio M, Reutershan T (2003) On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from mircosatellites and mitochondrial DNA. Mamm Biol 68:284–298

    Article  Google Scholar 

  • Zachos FE, Althoff C, Steynitz YV, Eckert I, Hartl GB (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67

    Article  Google Scholar 

  • Zachos FE, Hajji GM, Hmwe SS, Hartl GB, Lorenzini R, Mattioli S (2009) Population viability analysis and genetic diversity of the endangered red deer population from Mesola, Italy. Wildl Biol 15:175–186

    Article  Google Scholar 

Download references

Acknowledgments

We thank Christian Oswald (Cerviden Museum, Germany) for providing museum, gardens and private sample of non-iberian red deer subspecies and J. N. Guzmán for providing samples from Cabañeros National Park. Also we thank to prof. MI Fernández and M Richman for providing language advice and corrections. Laboratory work was possible thanks to our technician MP Vivas Cedillo. Financial support came from the Spanish Ministry of Education and Science, Projects CGL2004-05993 and CGL2007-63594.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Fernández-García.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-García, J.L., Carranza, J., Martínez, J.G. et al. Mitochondrial D-loop phylogeny signals two native Iberian red deer (Cervus elaphus) Lineages genetically different to Western and Eastern European red deer and infers human-mediated translocations. Biodivers Conserv 23, 537–554 (2014). https://doi.org/10.1007/s10531-013-0585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0585-2

Keywords

Navigation