Skip to main content

Advertisement

Log in

Functional diversity of epiphytes in two tropical lowland rainforests, French Guiana: using bryophyte life-forms to detect areas of high biodiversity

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Recent studies have described a new tropical lowland forest type in the Guianas, the tropical lowland cloud forest. It is characterized by an enriched epiphytic species diversity particularly for bryophytes compared to common lowland rainforest, and is facilitated by frequent early morning fog events in valley locations. While the increase in epiphytic species diversity in lowland cloud forests has been documented, uncertainties remain as to (1) how this small scale variation in water supply is shaping the functional diversity of epiphytic components in lowland forests, and (2) whether information on functional group composition of epiphytes might aid in discerning these cloud forests from the common lowland rainforest. We compare the distribution of functional groups of epiphytes across height zones in lowland cloud forest and lowland rain forest of French Guiana in terms of biomass, cover as well as the composition of bryophyte life-forms. Both forests differed in functional composition of epiphytes in the canopy, in particular in the mid and outer canopy, with the cloud forest having a higher biomass and cover of bryophytes and vascular epiphytes as well as a richer bryophyte life-form composition. Bryophyte life-forms characteristic for cloud forests such as tail, weft and pendants were almost lacking in the canopies of common rain forest whereas they were frequent in lowland cloud forests. We suggest that ground-based evaluation of bryophyte life-form composition is a straightforward approach for identifying lowland cloud forest areas for conservation, which represent biodiversity hotspots in tropical lowland forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acebey A, Gradstein SR, Kromer T (2003) Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. J Trop Ecol 19:9–18

    Article  Google Scholar 

  • Acosta-Mercado D, Cancel-Morales N, Chinea JD, Santos-Flores CJ, Sastre De Jesús I (2012) Could the canopy structure of bryophytes serve as an indicator of microbial biodiversity? A test for testate amoebae and microcrustaceans from a subtropical cloud forest. Plant Microbe Interact 2012: doi: 10.1007/s00248-00011-00004-00248

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes (including a taxonomic survey and description of their vegetation units in Europe). Van Gorcum, Assen

    Google Scholar 

  • Bates JW (1998) Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82(2):223–237

    Article  Google Scholar 

  • Benzing DH (1998) Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim Chang 39(2–3):519–540

    Article  Google Scholar 

  • Birse EM (1958) Ecological studies on growth-form in bryophytes. 3. The relationship between the growth-form of mosses and groundwater supply. J Ecol 46(1):9–27

    Article  Google Scholar 

  • Bovee EC (1979) Protozoa from acid-bog mosses and forest mosses of the Lake Itasca region (Minnesota, USA). Univ Kansas Sci Bull 51:615–629

    Google Scholar 

  • Braun-Blanquet J (1928) Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, NewYork

    Google Scholar 

  • Cornelissen JHC, Gradstein SR (1990) On the occurrence of bryophytes and macrolichens in different lowland rain forest types in Guyana. Trop Bryol 3:29–35

    Google Scholar 

  • Cornelissen JHC, ter Steege H (1989) Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guiana. J Trop Ecol 5:131–150

    Article  Google Scholar 

  • Costa DP (1999) Epiphytic bryophyte diversity in primary and secondary lowland rainforests in southeastern Brazil. Bryologist 102(2):320–326

    Article  Google Scholar 

  • Coxson DS, Nadkarni NM (1995) Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In: Lowman MD, Nadkarni NM (eds) Forest Canopies, 2nd edn. Elsevier Academic Press, Burlington, pp 495–543

    Google Scholar 

  • Davey MC, Ellis-Evans JC (1996) The influence of water content on the light climate within Antarctic mosses characterized using an optical microprobe. J Bryol 19:235–242

    Google Scholar 

  • Diaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655

    Article  Google Scholar 

  • Elumeeva TG, Soudzilovskaia NA, During HJ, Cornelissen JHC (2011) The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. J Veg Sci 22(1):152–164

    Article  Google Scholar 

  • Fierro-Calderon K, Martin TE (2007) Reproductive biology of the violet-chested hummingbird in Venezuela and comparisons with other tropical and temperate hummingbirds. Condor 109(3):680–685

    Article  Google Scholar 

  • Frahm JP (1990) The ecology of epiphytic bryophytes on Mt Kinabalu, Sabah (Malaysia). Nova Hedwigia 51(1–2):121–132

    Google Scholar 

  • Frahm JP (1994) Scientific results of the BRYOTROP expedition to Zaire and Rwanda. 1. The ecology of epiphytic bryophytes on Mt. Kahuzi (Zaire). Trop Bryol 9:137–152

    Google Scholar 

  • Frahm JP, Gradstein SR (1991) An altitudinal zonation of tropical rain forests using byrophytes. J Biogeogr 18(6):669–678

    Article  Google Scholar 

  • Freiberg M, Freiberg E (2000) Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. J Trop Ecol 16:673–688

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405(6783):220–227

    Article  PubMed  CAS  Google Scholar 

  • Gehrig-Downie C, Obregon A, Bendix J, Gradstein SR (2011) Epiphyte biomass and canopy microclimate in the tropical lowland cloud forest of French Guiana. Biotropica 43(5):591–596

    Article  Google Scholar 

  • Gehrig-Downie C, Marquardt J, Obregon A, Bendix J, Gradstein SR (2012) Diversity and vertical distribution of filmy ferns as a tool for identifying the novel forest type “tropical lowland cloud forest”. Ecotropica (in press)

  • Gerson U (1969) Moss-arthropod associations. Bryologist 72(4):495–500

    Google Scholar 

  • Gignac LD (2001) Bryophytes as indicators of climate change. Bryologist 104(3):410–420

    Article  Google Scholar 

  • Gimingham CH, Birse EM (1957) Ecological studies on growth-form in bryophytes. 1. Correlations between growth-form and habitat. J Ecol 45(2):533–547

    Article  Google Scholar 

  • Gradstein SR (2006) The lowland cloud forest of French Guiana—a liverwort hotspot. Cryptogam Bryol 27(1):141–152

    Google Scholar 

  • Gradstein SR, Sporn SG (2010) Land-use change and epiphytic bryophyte diversity in the Tropics. Nova Hedwigia 138:311–323

    Google Scholar 

  • Gradstein SR, Hietz P, Lücking R, Lücking A, Sipman HJM, Vester HFM, Wolf JHD, Gardette E (1996) How to sample the epiphytic diversity of tropical forests. Ecotropica 2:59–72

    Google Scholar 

  • Gradstein SR, Griffin D III, Morales MI, Nadkarni NM (2001) Diversity and habitat differentiation of mosses and liverworts in the cloud forest of Monteverde, Costa Rica. Caldasia 23(1):203–212

    Google Scholar 

  • Gradstein SR, Nadkarni NM, Krömer T, Holz IH, Nöske N (2003) A protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity of tropical rain forests. Selbyana 24:105–111

    Google Scholar 

  • Gradstein SR, Obregón A, Gehrig C, Bendix J (2010) Tropical lowland cloud forest—a neglected forest type. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests—science for conservation and management. Cambridge University Press, Cambridge, pp 329–338

    Google Scholar 

  • Grimaldi M, Riéra B (2001) Geography and Climate. In: Bongers F, Charles-Dominique P, Forget PM, Théry M (eds) Nouragues: dynamics and plant-animal interactions in a neotropical rainforest. Kluwer Academic, Dordrecht, pp 9–18

    Google Scholar 

  • Guil N, Sanchez-Moreno S, Machordom A (2009) Local biodiversity patterns in micrometazoans: are tardigrades everywhere? Syst Biodivers 7(3):259–268

    Article  Google Scholar 

  • Hammond PM, Storck NE (1997) Tree-crown beetles in context: a comparison of canopy and other ecotone assemblages in a lowland tropical forest in Sulawesi. In: Stork NE, Adis J, Didham R (eds) Canopy Arthropods. Chapman & Hall, London, pp 184–223

    Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  • Horikawa Y, Nakanishi S (1954) On the growth-form types of epiphytic bryophytes. Bull Soc Plant Ecol 3(4):203–210

    Google Scholar 

  • Karger DN, Kluge J, Abrahamczyk S, Salazar L, Homeier J, Lehnert M, Amoroso VB, Kessler M (2012) Bryophyte cover on trees as proxy for air humidity in the tropics. Ecol Ind 20:277–281

    Article  Google Scholar 

  • Kessler M (2000) Altitudinal zonation of Andean cryptogam communities. J Biogeogr 27(2):275–282

    Article  Google Scholar 

  • Köhler L, Tobon C, Frumau KFA, Bruijnzeel LA (2007) Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecol 193(2):171–184

    Article  Google Scholar 

  • Kürschner H, Frey W, Parolly G (1999) Patterns and adaptive trends of life forms, life strategies and ecomorphological structures in tropical epiphytic bryophytes—a pantropical synopsis. Nova Hedwigia 69(1–2):73–99

    Google Scholar 

  • Lakatos M, Rascher U, Büdel B (2006) Functional characteristics of corticolous lichens in the understory of a tropical lowland rain forest. New Phytol 172(4):679–695

    Article  PubMed  Google Scholar 

  • Leon-Vargas Y, Engwald S, Proctor MCF (2006) Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests. J Biogeogr 33(5):901–913

    Article  Google Scholar 

  • Mägdefrau K (1982) Life forms of bryophytes. In: Smith AJE (ed) Bryophyte Ecology. Chapman and Hall, London, pp 45–58

    Chapter  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li WH, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319(5860):169–172

    Article  PubMed  CAS  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Montfoort D, Ek R (1990) Vertical distribution and ecology of epiphytic bryophytes and lichens in a lowland rain forest in French Guyana, MSc. University of Utrecht, Utrecht

    Google Scholar 

  • Mota de Oliveira S, Cornelissen JHC, Gradstein SR (2009) Niche assembly of epiphytic bryophyte communities in the Guianas: a regional approach. J Biogeogr 36(11):2076–2084

    Article  Google Scholar 

  • Nadkarni NM, Matelson TJ (1989) Bird use of epiphyte resources in neotropical trees. Condor 91(4):891–907

    Article  Google Scholar 

  • Normann F, Weigelt P, Gehrig-Downie C, Gradstein SR, Sipman HJM, Obregon A, Bendix J (2010) Diversity and vertical distribution of epiphytic macrolichens in lowland rain forest and lowland cloud forest of French Guiana. Ecol Ind 10(6):1111–1118

    Article  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416(6883):841–844

    Article  PubMed  CAS  Google Scholar 

  • Obregon A, Gehrig-Downie C, Gradstein SR, Rollenbeck R, Bendix J (2011) Canopy level fog occurrence in a tropical lowland forest of French Guiana as a prerequisite for high epiphyte diversity. Agric For Meteorol 151(3):290–300

    Article  Google Scholar 

  • Oishi Y (2009) A survey method for evaluating drought-sensitive bryophytes in fragmented forests: a bryophyte life-form based approach. Biol Conserv 142(12):2854–2861

    Article  Google Scholar 

  • Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea coast. Appl Environ Microbiol 70(11):6569–6579

    Article  PubMed  CAS  Google Scholar 

  • Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Korner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PLS, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: a global view of forest canopies. Science 301(5630):183–186

    Article  PubMed  CAS  Google Scholar 

  • Pardow A, Lakatos M (2012) Desiccation tolerance and global change: implication for tropical bryophytes in lowland forests. Biotropica. doi:10.1111/j.1744-7429.2012.00884.x

    Google Scholar 

  • Pardow A, Hartard B, Lakatos M (2010) Morphological, photosynthetic and water relations traits underpin the contrasting success of two tropical lichen groups at the interior and edge of forest fragments. AoB Plants plq004 (10, doi:10.1093/aobpla/plq004)

  • Pilato G, Binda MG (2001) Biogeography and limno-terrestrial tardigrades: are they truly incompatible binomials? Zool Anz 240(3–4):511–516

    Article  Google Scholar 

  • Pócs T (1982) Tropical forest bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapmann & Hall, London, pp 59–104

    Chapter  Google Scholar 

  • Poncy O, Sabatier D, Préfost MF, Hardy I (2001) The lowland high rainforest: structure and tree species diversity. In: Bongers F, Charles-Dominique P, Forget PM, Théry M (eds) Nouragues: dynamics and plant–animal interactions in a neotropical rainforest. Kluwer Academic, Dordrecht, pp 31–46

    Google Scholar 

  • Proctor MCF, Smith AJE (1995) Ecological and systematic implications of branching patterns in bryophytes. In: Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden, St. Louis, pp 87–110

    Google Scholar 

  • R-Development-Core-Team (2011) R: A language and environment for statistical computing. 2.13.1 edn. R foundation for statistical computing, Vienna, Austria

  • Rhoades FM (1995) Nonvascular epiphytes in forest canopies: worldwide distribution, abundance, and ecological roles. In: Lowman MD, Nadkarni NM (eds) Forest canopies, 2nd edn. Academic Press, Burlington, pp 353–408

    Google Scholar 

  • Richards W (1984) The ecology of tropical forest bryophytes. In: Schuster RM (ed) New manual of bryology, vol 2., The Hattori botanical laboratoryNinchinan, Japan, pp 1233–1270

    Google Scholar 

  • Romanski J, Pharo EJ, Kirkpatrick JB (2011) Epiphytic bryophytes and habitat variation in montane rainforest, Peru. Bryologist 114(4):720–731

    Article  Google Scholar 

  • Romero C, Putz FE, Kitajima K (2006) Ecophysiology in relation to exposure of pendant epiphytic bryophytes in the canopy of a tropical montane oak forest. Biotropica 38(1):35–41

    Google Scholar 

  • Sillett SC, Gradstein SR, Griffin D (1995) Bryophyte diversity of ficus tree crowns from cloud forest and pasture in Costa-Rica. Bryologist 98(2):251–260

    Article  Google Scholar 

  • Smith TM, Shugart HH, Woodward FI (1997) Plant functional types - their relevance to ecosystem properties and global change. International Geosphere-Biosphere Programm Book Series 1. Cambridge University Press, Cambridge

  • Sporn SG, Bos MM, Kessler M, Gradstein SR (2010) Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv 19(3):745–760

    Article  Google Scholar 

  • Stuntz S, Simon U, Zotz G (2002) Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. Int J Biometeorol 46(2):53–59

    Article  PubMed  Google Scholar 

  • Tilman D (2001) Functional diversity. Ecyclopedia Biodivers 3:109–121

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302

    Article  CAS  Google Scholar 

  • Tüxen R, Ellenberg H (1937) Der systematische und ökologische Gruppenwert. Ein Beitrag zur Begriffsbildung und Methodik in der Pflanzensoziologie. Mitt. Florist.-Soziol. Arbeitsgem. Nieders, vol 3. Hannover

  • van Leerdam A, Zagt RJ, Veneklaas EJ (1990) The distribution of epiphyte growth-forms in the canopy of a Colombian cloud forest. Vegetatio 87(1):59–71

    Article  Google Scholar 

  • Veneklaas EJ, Zagt RJ, Van Leerdam A, Van Ek R, Broekhoven AJ, Van Genderen M (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest Colombia. Vegetatio 89(2):183–192

    Article  Google Scholar 

  • Vicente F (2010) Micro-invertebrates conservation: forgotten biodiversity. Biodivers Conserv 19(13):3629–3634

    Article  Google Scholar 

  • Vieira C, Seneca A, Sergio C, Ferreira MT (2012) Bryophyte taxonomic and functional groups as indicators of fine scale ecological gradients in mountain streams. Ecol Ind 18:98–107

    Article  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92(1):3–10

    Article  PubMed  Google Scholar 

  • Wolf JHD (1993) Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann Mo Bot Gard 80(4):928–960

    Article  Google Scholar 

  • Wolf JHD (1995) Non-vascular epiphyte diversity patterns in the canopy of an upper montane rain forest (2550–3670 m), central Cordillera, Colombia. Selbyana 16(2):185–195

    Google Scholar 

  • Yanoviak SP, Nadkarni NM, Solano R (2007) Arthropod assemblages in epiphyte mats of Costa Rican cloud forests. Biotropica 39(2):202–210

    Article  Google Scholar 

  • Zotz G (1999) Altitudinal changes in diversity and abundance of non-vascular epiphytes in the tropics: an ecophysiological explanation. Selbyana 20(2):256–260

    Google Scholar 

Download references

Acknowledgments

We are very thankful to Lena Reibelt, Nina Kelch, Susanne Krause, Florian Ulm, Johannes Döhlemann, Matthias Bass, Tobias Graf, Eva Schloter and Alec Baxt for their help on data collection. We further thank Philippe Gaucher and Alec Baxt for assisting on tree equipment. We greatly acknowledge the excellent support of the staff of the Nouragues Stations, CNRS-Guyane (USR 3456), and the managers of the Nouragues Natural Reserve. We thank Hans ter Steege and one anonymous referee for helpful comments on the manuscript. The project received financial support from the Centre national de la recherché scientifique (CNRS, Nouragues Grant 2008 and 2010, PIR Amazonie), the German Academic Exchange Service (DAAD) and the German Science Foundation (DFG, LA 1426/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Pardow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardow, A., Gehrig-Downie, C., Gradstein, R. et al. Functional diversity of epiphytes in two tropical lowland rainforests, French Guiana: using bryophyte life-forms to detect areas of high biodiversity. Biodivers Conserv 21, 3637–3655 (2012). https://doi.org/10.1007/s10531-012-0386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0386-z

Keywords

Navigation