Skip to main content

Advertisement

Log in

Effects of stream restorations on riparian mesohabitats, vegetation and carabid beetles

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We investigated the effects of hydromorphological restoration measures (mainly the removal of bank fixations) on riparian mesohabitats, vegetation and carabid beetles by comparing 24 restored to nearby non-restored floodplain sections in Germany. Mesohabitats were recorded along ten equally-spaced transects, plant communities and riparian plant and carabid beetle species along three transects per section. Based on 18 indices including habitat and species diversity, taxonomic diversity and functional indices we compared the frequency and magnitude of changes following restoration, both for the overall dataset and for each site individually. Riparian habitat diversity doubled in restored sections compared to non-restored sections. The numbers of vegetation units and plant and carabid beetle species richness also doubled in restored sections, whereas changes in Shannon diversity were most pronounced for mesohabitats and riparian plants. Taxonomic diversity of carabid beetles decreased in restored sections reflecting post restoration dominance of riparian Bembidion species. Stress-tolerant pioneers of plant and especially carabid species benefit strongly from the re-establishment of open sand and gravel bars, while hygrophilous species, which also include non-riparian species, did not respond to restoration. We conclude that restoring river hydromorphology has almost generally positive effects on riparian habitats and riparian biodiversity. Riparian biota are thus well-suited indicators for the effects of hydromorphological restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen J (1970) Habitat choice and life history of Bembidiini (Col., Carabidae) on river banks in central and northern Norway. Norsk ent Tidsskr 17:17–65

    Google Scholar 

  • Andersen J (1978) The influence of the substratum on the habitat selection of Bembidiini (Col., Carabidae). Norw J Entomol 25:119–138

    Google Scholar 

  • Andersen J (1985) Ecomorphological adaptations of riparian Bembidiini species (Coleoptera, Carabidae). Entomologica Generali 12:41–46

    Google Scholar 

  • Andersson E, Nilsson C, Johansson M (2000) Effects of river fragmentation on plant dispersal and riparian flora. Regul Rivers Res Manag 89:83–89

    Article  Google Scholar 

  • Baattrup-Pedersen A, Riis T, Hansen HO, Friberg N (2000) Restoration of a Danish headwater stream: short-term changes in plant species abundance and composition. Aquatic Conserv Mar Freshw Ecosyst 10:13–23

    Article  Google Scholar 

  • Baattrup-Pedersen A, Friberg N, Larsen SE, Riis T (2005) The influence of channelisation on riparian plant assemblages. Freshw Biol 50:1248–1261

    Article  Google Scholar 

  • Barber HS (1931) Traps for cave inhabiting insects. J El Mit Sci Soc 46:259–266

    Google Scholar 

  • Bates AJ, Sadler JP, Fowles AP (2006) Condition-dependent dispersal of a patchily distributed riparian ground beetle in response to disturbance. Oecologia 150:50–60

    Article  PubMed  Google Scholar 

  • Bonn A, Hagen K, Wohlgemuth-von Reiche D (2002) The significance of flood regimes for carabid beetle and spider communities in riparian habitats - a comparison of three major rivers in Germany. River Res Applic 18:43–64

    Article  Google Scholar 

  • Burkart M (2001) River corridor plants (Stromtalpflanzen) in Central European lowland: a review of a poorly understood plant distribution pattern. Global Ecol Biogeogr 10:449–468

    Article  Google Scholar 

  • Den Boer PJ (1970) On the significance of dispersal power for populations of carabid-beetles (Coleoptera, Carabidae). Oecol 4:1–28

    Article  Google Scholar 

  • Den Boer PJ (1990) Density limits and survival of local populations in 64 carabid species with different powers of dispersal. J Evol Biol 3:19–48

    Article  Google Scholar 

  • Desender K (1989) Ecomorphological adaptations of riparian carabid beetles. In: Wouters K, Baert L (eds) Verhandelingen van het Symposium “Invertebraten van België”. Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussels, Belgium, pp 309–314

    Google Scholar 

  • Desender K (2000) Flight muscle development and dispersal in the life cycle of carabid beetles: patterns and processes. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen. Entomologie 70:13–31

    Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology–a review. Basic Appl Ecol. 4:493–506

    Article  Google Scholar 

  • DWD (2010) Climate data for Germany per regions: Time series of regional means. http://www.dwd.de. Cited 16 Jun 2011

  • Ellenberg H (1974) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scr Geobot 9:1–97

    Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5. Auflage, Ulmer-Verlag, Stuttgart

    Google Scholar 

  • Eyre MD, Luff ML, Phillips DA (2001) The ground beetles (Coleoptera: Carabidae) of exposed riverine sediments in Scotland and northern England. Biodivers Conserv 10:403–426

    Article  Google Scholar 

  • Follner K, Henle K (2006) The performance of plants, molluscs, and carabid beetles as indicators of hydrological conditions in floodplain grasslands. Int Rev Hydrobiol 91:364–379

    Article  Google Scholar 

  • Gerisch M (2011) Habitat disturbance and hydrological parameters determine the body size and reproduction strategy of alluvial ground beetles. Zookeys 100:353–370

    PubMed  Google Scholar 

  • Gerisch M, Schanowski A, Figura W, Gerken B, Dziock F, Henle K (2006) Carabid beetles (Coleoptera, Carabidae) as indicators of hydrological site conditions in floodplain grasslands. Int Rev Hydrobiol 91:326–340

    Article  Google Scholar 

  • Gesellschaft für Angewandte Carabidologie (2009) Lebensraumpräferenzen der Laufkäfer Deutschlands–Wissensbasierter Katalog. Angew Carab Suppl 5:45

    Google Scholar 

  • Gilvear D, Willby N (2006) Channel dynamics and geomorphic variability as controls on gravel bar vegetation; River Tummel, Scotland. River Res Appl 22:457–474

    Article  Google Scholar 

  • Godreau V, Bornette G, Frochot B, Amoros C, Castella E, Oertli B, Chambaud F, Oberti D, Craney E (1999) Biodiversity in the floodplain of Saone: a global approach. Biodivers Conserv 8:839–864

    Article  Google Scholar 

  • Greenwood MT, Bickerton MA, Castella E, Large ARG, Petts GE (1991) The use of coleoptera (arthropoda: insecta) for floodplain characterization on the River Trent, UK. Regul Rivers Res Manag 6:321–332

    Article  Google Scholar 

  • Günther J, Assmann T (2005) Restoration ecology meets carabidology: effects of floodplain restitution on ground beetles (Coleoptera, Carabidae). Biodivers Conserv 14:1583–1606

    Article  Google Scholar 

  • Gurnell A, Goodson J, Thompson K, Clifford N, Armitage P (2007) The river-bed: a dynamic store for plant propagules? Earth Surf Proc Land 32:1257–1272

    Article  Google Scholar 

  • Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen A-S, Johnson RK, Moe J, Pont D, Solheim AL, Van de Bound W (2010) The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019

    Article  PubMed  CAS  Google Scholar 

  • Jähnig SC, Lorenz AW, Hering D (2008) Hydromorphological parameters indicating differences between single-and multiple-channel mountain rivers in Germany, in relation to their modification and recovery. Aquatic Conserv Mar Freshw Ecosyst 18:1200–1216

    Article  Google Scholar 

  • Jähnig SC, Brunzel S, Gacek S, Lorenz AW, Hering D (2009) Effects of re-braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. J Appl Ecol 46:406–416

    Article  Google Scholar 

  • Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598

    Article  Google Scholar 

  • Klotz S, Kühn I (2002) Ökologische Strategietypen. Schriftenreihe für Vegetationskunde, Bundesamt für Naturschutz, Bonn 38:197–201

    Google Scholar 

  • Koch K (1989) Die Käfer Mitteleuropas. Ökologie. Band E1. Carabidae–Micropeplidae. Spektrum Akademischer Verlag, Heidelberg, p 440

    Google Scholar 

  • Kotze DJ, Brandmayr P, Casale A, Dekoninck W, Koivula MJ, Lövei GL, Mossakowski D, Noordijk J, Paarmann W, Pizzolotto R, Saska P, Schwerk A, Serrano J, Szyszko J, Taboada A, Turin H, Venn S, Vermeulen R, Zetto T (2011) Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. Zookeys 100:55–148

    Article  PubMed  Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D (2008a) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174

    Article  PubMed  Google Scholar 

  • Lambeets K, Hendrickx F, Vanacker S, Van Looy K, Maelfait J-P, Bonte D (2008b) Assemblage structure and conservation value of spiders and carabid beetles from restored lowland river banks. Biodivers Conserv 17:3133–3148

    Article  Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropod conservation planning. Biol Conserv 142:625–637

    Article  Google Scholar 

  • Manderbach R, Hering, D (2001) Typology of riparian ground beetle communities (Coleoptera, Carabidae, Bembidion spec.) in Central Europe and adjacent areas. Arch Hydrobiol 4:583–608

    Google Scholar 

  • Müller-Motzfeld G (2004) Adephaga 1: Carabidae (Laufkäfer). In: Freude H, Harde KW, Lohse GA, Klausnitzer B (eds) Die Käfer Mitteleuropas Bd. 2. Spektrum Verlag, Heidelberg

    Google Scholar 

  • Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  • Naiman RJ, Décamps H, McClain ME (2005) Riparia—ecology, conservation, and management of streamside communities. Elsevier Academic Press, San Diego

    Google Scholar 

  • Nilsson C, Svedmark M (2002) Basic principles and ecological consequences of changing water regimes: riparian plant communities. Environ Manag 30:468–480

    Article  Google Scholar 

  • Oberdorfer E (1983, 1992) Süddeutsche Pflanzengesellschaften. Teil I-III. Fischer, Stuttgart, Germany

  • Paetzold A, Yoshimura C, Tockner K (2008) Riparian arthropod responses to flow regulation and river channelization. J Appl Ecol 45:894–903

    Article  Google Scholar 

  • Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol 55:205–222

    Article  Google Scholar 

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biol Conserv 12:487–506

    Article  Google Scholar 

  • Raven PJ, Fox P, Everard M, Holmes NTH, Dawson FH (1997) River habitat survey: a new system for classifying rivers according to their habitat quality. In: Boon PJ, Howell DL (eds) Freshwater quality: defining the indefinable. The Stationary Office Edinburgh, Edinburgh, pp 215–234

    Google Scholar 

  • Renner K (1980) Faunistisch-ökologische Untersuchungen der Käferfauna pflanzensoziologisch unterschiedlicher Biotope im Evessell-Bruch bei Bielefeld-Sennestadt. Berichte des Naturwissenschaftlichen Vereins Bielefeld Sonderheft 2:145–176

    Google Scholar 

  • Renöfält BM, Nilsson C, Jansson R (2005) Spatial and temporal patterns of species richness in a riparian landscape. J Biogeogr 32:2025–2037

    Article  Google Scholar 

  • Riis T (2008) Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596:341–351

    Article  Google Scholar 

  • Rohde S, Schütz M, Kienast F, Englmaier P (2005) River widening: an approach to restoring riparian habitats and plant species. River Res Appl 21:1075–1094

    Article  Google Scholar 

  • Sadler J, Bell D, Fowles A (2004) The hydroecological controls and conservation value of beetles on exposed riverine sediments in England and Wales. Biol Conserv 118:41–56

    Article  Google Scholar 

  • Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Appl Veg Sci 9:271–278

    Article  Google Scholar 

  • Tabacchi E, Correll DL, Hauer R, Pinay G, Planty-Tabacchi A-M, Wissmar RC (1998) Development, maintenance and role of riparian vegetation in the river landscape. Freshw Biol 40:497–516

    Article  Google Scholar 

  • Tockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, Stanford JA (2008) Flood plains: critically threatened ecosystems. In: Polunin NVC (ed) Aquatic ecosystems. Trends and global prospects. Cambridge University Press, New York, pp 45–61

    Chapter  Google Scholar 

  • Trautner J (1992) Laufkäfer - Methoden der Bestandsaufnahme und Hinweise für die Auswertung bei Naturschutz- und Eingriffsplanungen. In: Trautner J (ed) Arten- und Biotopschutz in der Planung: Methodische Standards zur Erfassung von Tierartengruppen [BVDL-Tagung Bad Wurzach, 9.-10. November 1991]. Ökologie in Forschung und Anwendung 5:145–162

    Google Scholar 

  • Trautner J (1999) Handfänge als effektive und vergleichbare Methode zur Laufkäfer-Erfassung an Fließgewässern—Ergebnisse eines Test an der Aich (Baden-Württemberg). Angew Carab Suppl 1:139–144

    Google Scholar 

  • Van Looy K, Vanacker S, Jochems H, De Blust G, Dufrêne M (2005) Ground beetle habitat templets and riverbank integrity. River Res Appl 21:1133–1146

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) River continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Warwick RM, Clarke KR (1995) New “biodiversity” measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog 129:301–305

    Article  Google Scholar 

  • WFD (2000) Water Framework Directive (2000/60/EC). http://eur-lex.europa.eu. Cited 26 Jan 2011

  • Wintle BC, Kirkpatrick JB (2007) The response of riparian vegetation to flood-maintained habitat heterogeneity. Austral J Ecol 32:592–599

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Bundesamt für Naturschutz (FKZ 3507 85 050-K1) and Deutsche Bundesstiftung Umwelt (FK 25032-33/2). We thank researchers of the Department of Limnology and Conservation, Research Institute and Natural History Museum Senckenberg for the realization of field work on some streams in Hesse. We are grateful to Sonja Jähnig for providing data on three restoration measures at the Lahn and to Karsten Hannig for his support in carabid identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Januschke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Januschke, K., Brunzel, S., Haase, P. et al. Effects of stream restorations on riparian mesohabitats, vegetation and carabid beetles. Biodivers Conserv 20, 3147–3164 (2011). https://doi.org/10.1007/s10531-011-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0119-8

Keywords

Navigation