Skip to main content

Advertisement

Log in

Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Nematode-trapping fungi are ubiquitous in terrestrial habitats in dung, soils, litter and woody debris and they also occur in freshwater, but only one species has been found in marine habitats. The purpose of this study was therefore to investigate whether nematode-trapping fungi occurred in mangrove habitats. To achieve this we assessed the diversity of nematode-trapping fungi on decaying litter from mangroves, freshwater and terrestrial habitats (22 sites) in Hong Kong. Composite samples (n = 1,320) of decaying litter (wood and leaves) were examined and a total of 31 species of nematode-trapping fungi belonging to four genera, Arthrobotrys, Monacrosporium, and Dactylella were recorded. Twenty-nine species reported in this study are new records for Hong Kong and 16 species are new records from mangrove habitats worldwide. Nematode trapping fungi are therefore present in marine environments. Commonly encountered taxa were Arthrobotrys oligospora and Monacrosporium thaumasium which are abundant in all habitats. A. oligospora, M. thaumasium and Arthrobotrys musiformis were frequent (> 10%). Twenty-six species were rare (0.16–9.32%). Species richness and diversity was higher in terrestrial than in freshwater and mangrove habitats (ANOVA, < 0.001). A higher mean diversity was observed on decaying leaves as compared to decaying wood in all habitats (< 0.001). Based on Shannon diversity index, it was also observed that taxa characterized by adhesive nets were more frequent in all habitats. This can be explained by the fact that these taxa may have a better competitive saprotrophic ability which would allow them to compete favourably in nutrient limited environments. Abiotic factors that could be linked to differences in species diversity between decaying wood and leaves are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alias SA, Jones EBG (2000) Colonization of mangrove wood by marine fungi at Kuala Selangor mangrove stand, Malaysia. Fungal Divers 5:9–21

    Google Scholar 

  • Ananda K, Sridhar KR (2004) Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr Sci 87:1431–1435

    Google Scholar 

  • Anastasiou CJ (1964) Some aquatic fungi imperfecti from Hawaii. Pac Sci 18:202–206

    Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779. doi:10.1111/j.1462-2920.2004.00675.x

    Article  PubMed  CAS  Google Scholar 

  • Berg Å, Gärdenfors U, Hallingbäck T, Norén M (2002) Habitat preferences of red-listed fungi and bryophytes in woodland key habitats in southern Sweden—analyses of data from a national survey. Biodivers Conserv 11:1479–1503. doi:10.1023/A:1016271823892

    Article  Google Scholar 

  • Boddy L (2001) Fungal community ecology and wood decomposition processes in angiosperms, from standing tree to complete decay of course woody debris. Ecol Bull 49:43–56

    Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228. doi:10.1016/S0169-5347(98)01583-3

    Article  PubMed  Google Scholar 

  • Byrne PJ, Jones EBG (1975) Effect of salinity on spore germination of terrestrial and marine fungi. Trans Br Mycol Soc 64:497–503

    Google Scholar 

  • Cai L, Tsui CKM, Zhang K, Hyde KD (2002) Aquatic fungi from Lake Fuxian, Yunnan, China. Fungal Divers 9:57–70

    Google Scholar 

  • Cai L, Zhang KQ, McKenzie EHC, Hyde KD (2003) Freshwater fungi from bamboo and wood submerged in the Liput River in the Philippines. Fungal Divers 13:1–12

    Google Scholar 

  • Cai L, Ji KF, Hyde K (2006) Variation between freshwater and terrestrial fungal communities on decaying bamboo culms. Antonie Van Leeuwenhoek 89:293–301. doi:10.1007/s10482-005-9030-1

    Article  PubMed  Google Scholar 

  • Chen J, Xu LL, Liu B, Liu XZ (2007) Taxonomy of Dactylella complex and Vermispora. I. Generic concepts based on morphology and ITS sequences data. Fungal Divers 26:73–83

    CAS  Google Scholar 

  • Chinnadurai G, Fernando OJ (2007) Meiofauna of mangroves of the southeast coast of India with special reference to the free-living marine nematode assemblage. Estuar Coast Shelf Sci 72:329–336. doi:10.1016/j.ecss.2006.11.004

    Article  Google Scholar 

  • Cooke RC (1963) Ecological characteristics of nematode-trapping hyphomycetes I. Preliminary studies. Ann Appl Biol 52:431–437. doi:10.1111/j.1744-7348.1963.tb03767.x

    Article  Google Scholar 

  • Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 73:756–767. doi:10.1128/AEM.01170-06

    Article  PubMed  CAS  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Duong LM, McKenzie EHC, Lumyong S, Hyde KD (2008) Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park, Thailand. Fungal Divers 30:23–36

    Google Scholar 

  • Elshafie AE, Al-Bahry SN, Ba-Omar T (2003) Nematophagous fungi isolated from soil in Oman. Sydowia 55:18–32

    Google Scholar 

  • Esseen PA, Ehnstrom B, Ericson L, Sjoberg K (1997) Boreal forests. Ecol Bull 46:16–47

    Google Scholar 

  • Fryar SC, Booth W, Davies J, Hodgkiss IJ, Hyde KD (2004) Distribution of fungi on wood in the Tutong River, Brunei. Fungal Divers 17:17–38

    Google Scholar 

  • Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci 68:338–354

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gray NF (1983) Ecology of nematophagous fungi: distribution and habitat. Ann Appl Biol 102:501–509. doi:10.1111/j.1744-7348.1983.tb02721.x

    Article  Google Scholar 

  • Gray NF (1987) Nematophagous fungi with particular reference to their ecology. Biol Rev Camb Philos Soc 62:245–304. doi:10.1111/j.1469-185X.1987.tb00665.x

    Article  Google Scholar 

  • Gray NF (1988) Ecology of nematophagous fungi: effect of the soil nutrients N, P and K, and seven major metals on distribution. Plant Soil 108:286–290. doi:10.1007/BF02375661

    Article  CAS  Google Scholar 

  • Gulis V, Suberkropp K, Rosemond AD (2008) Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams. Appl Environ Microbiol 74:1094–1101. doi:10.1128/AEM.01903-07

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Luo J, Zhang K (2004) A new aquatic nematode-trapping hyphomycete. Mycotaxon 89:235–239

    Google Scholar 

  • Hao Y, Mo M, Su H, Zhang KQ (2005) Ecology of aquatic nematode-trapping hyphomycetes in southwestern China. Aquat Microb Ecol 40:175–181. doi:10.3354/ame040175

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD et al (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–276. doi:10.1016/S0065-2504(08)60121-X

    Article  Google Scholar 

  • Heilmann-Clausen J, Christensen M (2004) Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For Ecol Manag 201:105–117

    Google Scholar 

  • Ho WH, Yanna, Hyde KD, Hodgkiss IJ (2002) Seasonality and sequential occurrence of fungi on wood submerged in Tai Po Kau Forest Stream, Hong Kong. Fungal Divers 10:21–43

  • Hyde KD (1988) Observations on the vertical distribution of marine fungi on Rhizophora spp., at Kampong Danau mangrove Brunei. Brunei Asian Mar 5:77–81

    Google Scholar 

  • Hyde KD (1989) Ecology of tropical marine fungi. Hydrobiologia 178:199–208. doi:10.1007/BF00006027

    Article  Google Scholar 

  • Hyde KD (1990) A study of vertical zonation of intertidal fungi on Rhizophora apiculata at Kampong Kapok mangrove, Brunei. Aquat Bot 36:255–262. doi:10.1016/0304-3770(90)90039-N

    Article  Google Scholar 

  • Hyde KD, Alias SA (2000) Biodiversity and distribution of fungi associated with decomposing Nypa fruticans. Biodivers Conserv 9:393–402. doi:10.1023/A:1008911121774

    Article  Google Scholar 

  • Hyde KD, Goh TK (1998) Fungi on submerge wood in the Riviere St Marie-Louis, The Seychelles. S Afr J Bot 64:330–336

    Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118. doi:10.1007/BF00029117

    Article  Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161. doi:10.1023/A:1008823515157

    Article  Google Scholar 

  • Ilieva-Makulec K, Olejniczak I, Szanser M (2006) Response of soil micro- and mesofauna to diversity and quality of plant litter. Eur J Soil Biol 42:S244–S249. doi:10.1016/j.ejsobi.2006.07.030

    Article  Google Scholar 

  • Ingold CT (1944) Some new aquatic hyphomycetes. Trans Br Mycol Soc 27:45–46

    Google Scholar 

  • Jaffee BA, Strong DR, Muldoon AE (1996) Nematode-trapping fungi of a natural scrubland: tests for food chain involvement. Mycologia 88:554–564. doi:10.2307/3761149

    Article  Google Scholar 

  • Jansson HB, Lopez-Llorca LV (2001) Biology of nematophagous fungi. In: Misra JK, Horn BW (eds) Trichomycetes and other fungal groups, 1st edn. Science, Plymouth, pp 145–172

    Google Scholar 

  • Johnson TW, Autery CL (1961) An Arthrobotrys from brackish water. Mycologia 53:432–433. doi:10.2307/3756586

    Article  Google Scholar 

  • Kataoka R, Taniguchi T, Ooshima H, Futai K (2008) Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi. Plant Soil 304:267–275. doi:10.1007/s11104-008-9548-x

    Article  CAS  Google Scholar 

  • Kerry BR (1987) Biological control. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, New York, pp 233–263

    Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441. doi:10.1146/annurev.phyto.38.1.423

    Article  PubMed  CAS  Google Scholar 

  • Kodsueb R, McKenzie EHC, Lumyong P, Hyde KD (2008) Fungal succession on leaf litter of Mangolia liliifera (Magnoliaceae). Fungal Divers 30:55–72

    Google Scholar 

  • Lambshead PJD, Boucher G (2003) Marine nematode deep-sea biodiversity-hyperdiverse or hype? J Biogeogr 30:475–485

    Article  Google Scholar 

  • Larsen M, Nansen P, Gronvold J, Wolstrup J, Henriksen SA (1997) Biological control of gastro-intestinal nematodes; facts, future, or fiction? Vet Parasitol 72:479–492. doi:10.1016/S0304-4017(97)00112-X

    Article  PubMed  CAS  Google Scholar 

  • Li TF, Zhang KQ, Liu XZ (2000) Taxonomy of nematophagous fungi, 1st edn. Science, Beijing

    Google Scholar 

  • Li LF, Li T, Zhao ZW (2007) Differences of arbuscular mycorrhizal fungal diversity and community between a cultivated land, an old field, and a never-cultivated field in a hot and arid ecosystem of southwest China. Mycorrhiza 17:655–665. doi:10.1007/s00572-007-0143-4

    Article  PubMed  CAS  Google Scholar 

  • Liu XF, Zhang KQ (2003) Dactylella shizishanna sp. nov., from Shizi Mountain, China. Fungal Divers 14:103–107

    Google Scholar 

  • Liu B, Liu XZ, Zhuang WY (2005) Orbilia querci sp. nov. and its knob-forming nematophagous anamorph. FEMS Microbiol Lett 245:99–105. doi:10.1016/j.femsle.2005.02.027

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22. doi:10.1007/s10342-007-0182-6

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Google Scholar 

  • Maser C, Trappe JM (1984) The seen and unseen world of the fallen tree. Gen. Tech. Rep. PNW-164. US Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, 56 p

  • Mo MH, Huang X, Zhou W, Huang Y, Hao YE, Zhang KQ (2005) Arthrobotrys yunnanensis sp. nov., the fourth anamorph of Orbilia auricolor. Fungal Divers 18:107–115

    Google Scholar 

  • Mo MH, Chen WM, Su HY, Zhang KQ, Duan CQ, He DM (2006) Heavy metal tolerance of nematode-trapping fungi in lead-polluted soils. Appl Soil Ecol 31:11–19

    Article  Google Scholar 

  • O’dor P, Standovar T (2002) Substrate specificity and community structure of bryophyte vegetation in a near-natural montane beech forest. Community Ecol 3:39–49. doi:10.1556/ComEc.3.2002.1.5

    Article  Google Scholar 

  • O’dor P, Heilmann-Clausen J, Christensen M, Aude E, van Dort KW, Piltaver A, Siller I, Veerkamp MT, Walleyn R, Standovar T, van Hees AFM, Kosec J, Matocec N, Kraigher H, Grebenc T (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71. doi:10.1016/j.biocon.2006.02.004

    Article  Google Scholar 

  • Peach M (1950) Aquatic predacious fungi I. Trans Br Mycol Soc 33:148–153

    Article  Google Scholar 

  • Peach M (1952) Aquatic predacious fungi. II. Trans Br Mycol Soc 35:19–23

    Google Scholar 

  • Peach M (1954) Aquatic predaceous fungi III. Trans Br Mycol Soc 37:240

    Google Scholar 

  • Persmark L, Jansson H-B (1997) Nematophagous fungi in the rhizosphere of agricultural crops. FEMS Microbiol Ecol 22:303–312. doi:10.1111/j.1574-6941.1997.tb00382.x

    Article  CAS  Google Scholar 

  • Peterson EA, Katznelson H (1964) Occurence of nematode-trapping fungi in the rhizosphere. Nature 204:111–112. doi:10.1038/2041111b0

    Article  Google Scholar 

  • Pfister DH (1994) Orbilia fimicola, a nematophagous discomycete and its Arthrobotrys anamorph. Mycologia 86:451–453. doi:10.2307/3760578

    Article  Google Scholar 

  • Pfister DH (1997) Castor, Pollux and life histories of fungi. Mycologia 89:1–23. doi:10.2307/3761168

    Article  Google Scholar 

  • Pfister DH, Liftik ME (1995) Two Arthrobotrys anamorphs from Orbilia auricolor. Mycologia 87:684–688. doi:10.2307/3760812

    Article  Google Scholar 

  • Poon MOK, Hyde KD (1998) Biodiversity of intertidal estuarine fungi on Phragmites at Mai Po marshes, Hong Kong. Bot Mar 41:141–155

    Article  Google Scholar 

  • Rohde CA (1976) Composite sampling. Biometrics 32:273–282. doi:10.2307/2529498

    Article  PubMed  CAS  Google Scholar 

  • Seena S, Wynberg N, Barlocher F (2008) Fungal diversity during the leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communications, 1st edn. University of Illionois Press, Urbana

    Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67. doi:10.1007/s10531-006-9120-z

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688. doi:10.1038/163688a0

    Article  Google Scholar 

  • Sin KW, Hyde KD, Pointing SB (2002) Comparative enzyme production by fungi from diverse lignocellulosic substrates. J Microbiol Korea 40:241–244

    CAS  Google Scholar 

  • Somerfield PJ, Yodnarasri S, Aryuthaka C (2002) Relationships between seagrass biodiversity and infaunal communities: implications for studies of biodiversity effects. Mar Ecol Prog Ser 237:97–109. doi:10.3354/meps237097

    Article  Google Scholar 

  • Thorn RG, Barron GL (1984) Carnivorous mushrooms. Science 224:76–78. doi:10.1126/science.224.4644.76

    Article  PubMed  CAS  Google Scholar 

  • Tietjen JH, Alongi DM (1990) Population growth and effects of nematodes on nutrient regeneration and bacteria associated with mangrove detritus from northeastern Queensland (Australia). Mar Ecol Prog Ser 68:169–179. doi:10.3354/meps068169

    Article  Google Scholar 

  • Tsui CKM, Hyde KD, Hodgkiss IJ (2000) Biodiversity of fungi on submerged wood in Hong Kong streams. Aquat Microb Ecol 21:289–298. doi:10.3354/ame021289

    Article  Google Scholar 

  • Tsui CKM, Hyde KD, Fukushima K (2003) Fungi on submerged wood in the Koito River, Japan. Mycosci 44:55–59

    Article  Google Scholar 

  • Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390

    Google Scholar 

  • Wai HH, Hyde KD, Hodgkiss IJ, Yanna (2001) Fungal communities on submerged wood from streams in Brunei, Hong Kong, and Malaysia. Mycol Res 105:1492–1501. doi:10.1017/S095375620100507X

    Article  Google Scholar 

  • Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813. doi:10.1016/j.soilbio.2007.10.015

    Article  CAS  Google Scholar 

  • Webster J, Henrici A, Spooner B (1998) Orbilia fimicoloides sp. nov., the teleomorph of Dactylella cf. oxyspora. Mycol Res 102:99–102. doi:10.1017/S0953756297004747

    Article  Google Scholar 

  • Whitford WG (1996) The importance of the biodiversity of soil biota in arid ecosystems. Biodivers Conserv 5:185–195. doi:10.1007/BF00055829

    Article  Google Scholar 

  • Wong MKM, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM et al (1998) Role of fungi in freshwater ecosystems. Biodivers Conserv 7:1187–1206. doi:10.1023/A:1008883716975

    Article  Google Scholar 

  • Yu Z, Qiao M, Zhang Y, Baral HO, Zhang KQ (2007a) Orbilia vermiformis sp. nov. and its anamorph. Mycotaxon 99:271–278

    Google Scholar 

  • Yu ZF, Zhang Y, Qiao M, Zhang KQ (2007b) Orbilia dorsalia sp nov., the teleomorph of Dactylella dorsalia sp nov. Cryptogam Mycol 28:55–63

    Google Scholar 

  • Zhang ZN, Zhou H (2003) The systematics of free-living marine nematodes. J Ocean Univ Qingdao 33:891–900

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Lau Chun Pong for his generosity in sharing knowledge in statistics. Helen Leung is thanked for technical assistance. The University of Hong Kong is thanked for providing fund, a doctoral studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aung Swe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swe, A., Jeewon, R., Pointing, S.B. et al. Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats. Biodivers Conserv 18, 1695–1714 (2009). https://doi.org/10.1007/s10531-008-9553-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9553-7

Keywords

Navigation