Skip to main content

Advertisement

Log in

Biodiversity response to experimental induced hypoxic-anoxic conditions in seagrass sediments

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The effects of induced hypoxic-anoxic conditions on the metazoan meiofaunal assemblages and nematode diversity were investigated with an in situ experiment in a Posidonia oceanica meadow. The experiment, of the duration of five months, was performed in three experimental sets of plots. Two of them were enriched with organic matter to induce anoxic conditions (1 set with sucrose and 1 set with sugar plus nutrients, i.e. nitrogen and phosphorus) whereas the last set of plots was kept undisturbed and used as Control. Metazoan meiofauna displayed a fast response to the induced anoxic conditions with an immediate reduction of the richness of taxa (only nematodes and copepods tolerated the hypoxic-anoxic conditions). Nematodes were the most tolerant organisms as their species richness did not change in hypoxic-anoxic conditions, but their species composition and trophic structure displayed significant changes. Some genera (Desmoscolex and Bolbolaimus) were replaced by other (Chromadorella, Sabatiera and Polysigma) more tolerant to the extreme conditions. No significant differences were observed in the Control plots, whereas in treated plots, selective deposit feeders and predators decreased significantly, being replaced by non-selective deposit feeders and epistrate feeders. These results indicate that, events causing a reduction in oxygen availability, can have an impact on the nematode beta-diversity and functional diversity with potential important implications on the benthic food web and functioning of the seagrass systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertelli G, Covazzi-Harriague A, Danovaro R et al (1999) Differential responses of bacteria, meiofauna and macrofauna in a shelf area (Ligurian Sea, NW Mediterranean): role of food availability. J Sea Res 42:11–26. doi:10.1016/S1385-1101(99)00012-X

    Article  Google Scholar 

  • Amara R, Lagardere F, Desaunay Y et al (2000) Metamorphosis and estuarine colonization in the common sole Sole solea (L.): implications for recruitment regulation. Oceanol Acta 23:469–484. doi:10.1016/S0399-1784(00)00134-1

    Article  Google Scholar 

  • Austen MC, Widdicombe S (2006) Comparison of the response of meio- and macrobenthos to disturbance and organic enrichment. J Exp Mar Biol Ecol 330:96–104. doi:10.1016/j.jembe.2005.12.019

    Article  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14(6):224–228. doi:10.1016/S0169-5347(98)01583-3

    Article  PubMed  Google Scholar 

  • Brown JR, Gowen RJ, McLusky DS (1987) The effect of salmon farming on the benthos of a Scottish sea Loch. J Exp Mar Biol Ecol 109:39–51. doi:10.1016/0022-0981(87)90184-5

    Article  Google Scholar 

  • Clarke KR (1993) Non parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253. doi:10.3354/meps210223

    Article  CAS  Google Scholar 

  • Coull BC (1988) Chapter 3 ecology of the marine meiofauna introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC London, pp 18–38

    Google Scholar 

  • Danovaro R (1996) Detritus-Bactera-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterrraenan. Mar Biol (Berl) 127:1–13. doi:10.1007/BF00993638

    Article  CAS  Google Scholar 

  • Danovaro R (2003) Pollution threats in Mediterranean Sea: an overview. Chem Ecol 19:15–32. doi:10.1080/0275754031000081467

    Article  CAS  Google Scholar 

  • Danovaro R, Fabiano M (1997) Seasonal Changes in Quality and Quantity of Food Available for Benthic Suspension-feeders in the Golfo Marconi (North-western Mediterranean). Estuar Coast Shelf Sci 44:723–736. doi:10.1006/ecss.1996.0135

    Article  CAS  Google Scholar 

  • Danovaro R, Gambi C (2002) Biodiversity and trophic structure of nematode assemblages in seagrass systems: evidence for a coupling with changes in food availability. Mar Biol (Berl) 141:667–677. doi:10.1007/s00227-002-0857-y

    Article  CAS  Google Scholar 

  • Danovaro R, Della Croce N, Eleftheriou A et al (1995a) Meiofauna of the deep Eastern Mediterranean Sea: distribution and abundance in relation to bacterial biomass, organic matter composition and other environmental factors. Prog Oceanogr 36:329–341. doi:10.1016/0079-6611(96)00002-X

    Article  Google Scholar 

  • Danovaro R, Fraschetti S, Belgrano A et al (1995b) The potential impact of meiofauna on the recruitment of macrobenthos in a subtidal coastal benthic community of the Ligurian Sea: a field result. In: Eleftheriou A, Ansell AD, Smith CJ (eds) Biology and ecology of shallow coastal waters. Olsen and Olsen, Fredensborg, Denmark, pp 115–122

    Google Scholar 

  • Danovaro R, Gambi C, Manini E et al (2000a) Meiofauna response to a dynamic river plume front. Mar Biol (Berl) 137:359–370. doi:10.1007/s002270000353

    Article  CAS  Google Scholar 

  • Danovaro R, Tselepides A, Otegui A et al (2000b) Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Prog Oceanogr 46:367–400. doi:10.1016/S0079-6611(00)00026-4

    Article  Google Scholar 

  • Danovaro R, Gambi C, Luna G et al (2004) Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): evidence form biochemical, microbial and meiofaunal indicators. Mar Pollut Bull 49:325–333. doi:10.1016/j.marpolbul.2004.02.038

    Article  PubMed  CAS  Google Scholar 

  • De Troch M, Van Gansbeke D, Vincx M (2006) Resource availability and meiofauna in sediment of tropical seagrass beds: local versus global trends. Mar Environ Res 61:59–73. doi:10.1016/j.marenvres.2005.05.003

    Article  PubMed  CAS  Google Scholar 

  • Deprez T et al (2005) NeMys. World wide web electronic publication. www.nemys.ugent.be, version (1/2007)

  • Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanogr Mar Biol Annu Rev 33:245–303

    Google Scholar 

  • Essink K, Keidel H (1998) Changes in estuarine nematode communities following a decrease of organic pollution. Aquat Ecol 32:195–202. doi:10.1023/A:1009901207217

    Article  Google Scholar 

  • Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of the single-step chromium reduction method. Biogeochemistry 8:205–222. doi:10.1007/BF00002889

    Article  CAS  Google Scholar 

  • Fraschetti S, Gambi C, Giangrande A et al (2006) Structural and functional response of meiofauna rocky assemblages to sewage pollution. Mar Pollut Bull 52:540–548. doi:10.1016/j.marpolbul.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen MS, Holmer M, Pérez M, Invers O, Ruiz JM, Knudsen BB (2008) Effect of increased sediment sulfide concentrations on the composition of stable sulfur isotopes (δ 34S) and sulfur accumulation in the seagrasses Zostera marina and Posidonia oceanic. J Exp Mar Biol Ecol (in press)

  • Gambi C, Vanreusel A, Danovaro R (2003) Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep Sea Res Part I Oceanogr Res Pap 50:103–117. doi:10.1016/S0967-0637(02)00143-7

    Article  Google Scholar 

  • Giere O (1993) Meiobenthology. Springer-Verlag, Germany

    Google Scholar 

  • Grall J, Chauvaud L (2002) Marine eutrophication and benthos: the need for new approaches and concepts. Glob Change Biol 8:813–830. doi:10.1046/j.1365-2486.2002.00519.x

    Article  Google Scholar 

  • Gray JS (2000) The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. J Exp Mar Biol Ecol 250:23–49. doi:10.1016/S0022-0981(00)00178-7

    Article  PubMed  Google Scholar 

  • Gray JS, Wu RSS, Or YY (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser 238:249–279. doi:10.3354/meps238249

    Article  Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. Prepared by the UNEP World Conservation Monitoring Centre, University of California Press, Berkeley, USA

  • Hansen BW, Stenalt E, Petersen JK et al (2002) Invertebrate re-colonisation in Mariager Fjord (Denmark) after severe hypoxia. I. Zooplankton and settlement. Ophelia 56:197–213

    Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489

    Google Scholar 

  • Hendelberg M, Jensen P (1993) Vertical distribution of the nematode fauna in a coastal sediment influenced by seasonal hypoxia in the bottom water. Ophelia 37:83–94

    Google Scholar 

  • Holmer M, Frederiksen M, Møllegaard H (2005) Sulfur accumulation in eelgrass (Zostera marina) and effect of sulfur on eelgrass growth. Aquat Bot 81:367–379. doi:10.1016/j.aquabot.2004.12.006

    Article  CAS  Google Scholar 

  • Hulbert SH (1971) The non-concept of species diversity: a critique and alternative parameters. Ecology 52:577–586. doi:10.2307/1934145

    Article  Google Scholar 

  • Jørgensen BB, Richardson K (1996) Eutrophication in coastal marine ecosystems. Coastal and estuaries studies 52. American Geophysical Union, Washington DC, p 267

    Google Scholar 

  • Josefson AB, Widbom B (1988) Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin. Mar Biol (Berl) 100:31–40. doi:10.1007/BF00392952

    Article  Google Scholar 

  • Karakassis I, Tsapakis M, Hatziyanni E et al (2000) Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES J Mar Sci 5(5):1462–1471. doi:10.1006/jmsc.2000.0925

    Article  Google Scholar 

  • Koroleff F (1983) Determination of ammonia. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis: second (Revised and extended edn). Verlag Chemie, Weinheim, pp 150–157

    Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24. doi:10.1023/A:1003980226194

    Article  CAS  Google Scholar 

  • La Rosa T, Mirto S, Mazzola A et al (2001) Differential responses of benthic microbes and meiofauna to fish-farm disturbance in coastal sediments. Environ Pollut 112:427–434. doi:10.1016/S0269-7491(00)00141-X

    Article  PubMed  CAS  Google Scholar 

  • Lampadariou N, Austen MC, Robertson N et al (1997) Analysis of meiobenthic community structure in relation to pollution and disturbance in Iraklion Harbour, Greece. Vie Milieu 47:9–24

    Google Scholar 

  • Leguerrier D, Niquil N, Boileau N et al (2003) Numerical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of France. Mar Ecol Prog Ser 246:17–37. doi:10.3354/meps246017

    Article  Google Scholar 

  • Livingston RJ (2001) Eutrophication processes in coastal systems: origin and succession of plankton blooms and effects on secondary production in Gulf Coast estuaries. CRC Press, New York

    Google Scholar 

  • Margalef DR (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Mazzola A, Mirto S, Danovaro R (1999) Initial fish-farm impact on meiofaunal assemblages in coastal sediments of the Western Mediterranean. Mar Pollut Bull 38(12):1126–1133. doi:10.1016/S0025-326X(99)00142-3

    Article  CAS  Google Scholar 

  • Mazzola A, Mirto S, La Rosa T et al (2000) Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES J Mar Sci 57:1454–1461. doi:10.1006/jmsc.2000.0904

    Article  Google Scholar 

  • Meyers MB, Fossing H, Powell EN (1987) Microdistributions of interstitial meiofauna, oxygen and sulphide gradients, and the tubes of macro-infauna. Mar Ecol Prog Ser 35:223–241. doi:10.3354/meps035223

    Article  Google Scholar 

  • Mirto S, La Rosa T, Gambi C et al (2002) Nematode community response to fish-farm impact in the Western Mediterranean. Environ Pollut 116:203–214. doi:10.1016/S0269-7491(01)00140-3

    Article  PubMed  CAS  Google Scholar 

  • Modig H, Olafsson E (1998) Responses of Baltic benthic invertebrates to hypoxic events. J Exp Mar Biol Ecol 229:133–148. doi:10.1016/S0022-0981(98)00043-4

    Article  Google Scholar 

  • Murell MC, Fleeger JW (1989) Meiofauna abundance on the Gulf of Mexico continental shelf affected by hypoxia. Cont Shelf Res 9:1049–1062. doi:10.1016/0278-4343(89)90057-5

    Article  Google Scholar 

  • Nagelkerken I, van der Velde G, Gorissen MW et al (2000) Importance of mangroves, seagrass beds and shallow coral reefs as nursery for important coral reef fishes, using a visual census techniques. Estuar Coast Shelf Sci 51:31–44. doi:10.1006/ecss.2000.0617

    Article  Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Google Scholar 

  • Nordberg K, Filipsson HL, Gustafsson M et al (2001) Climate, hydrographic variations and marine benthic hypoxia in Koljo Fjord, Sweden. J Sea Res 46:187–200. doi:10.1016/S1385-1101(01)00084-3

    Article  Google Scholar 

  • Painting SJ, Devlin MJ, Malcolm SJ et al (2007) Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication. Mar Pollut Bull 55:74–90. doi:10.1016/j.marpolbul.2006.08.020

    Article  PubMed  CAS  Google Scholar 

  • Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–311

    Google Scholar 

  • Penhale PA, Wetzel RG (1983) Structural and functional adaptations of eelgrass (Zostera marina L.) to the anaerobic sediment environment. Can J Bot 61:1421–1428

    Google Scholar 

  • Pérez M, Invers O, Ruiz JM et al (2007) Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in the sediments: an experimental assessment. J Exp Mar Biol Ecol 344:149–160. doi:10.1016/j.jembe.2006.12.020

    Article  CAS  Google Scholar 

  • Peterson CH, Summerson CH, Thomson E et al (2000) Synthesis of linkages between benthic and fish communities as a key to protecting essential fish habitat. Bull Mar Sci 66:759–744

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley and Sons, New York, p 165

    Google Scholar 

  • Platt HM, Warwick RM (1983) Free living marine nematodes. Part I British enoplids. Linnean Society of London and The Estuarine Brakish-water Sciences Association by Cambridge University Press, pp 1–306

  • Platt HM, Warwick RM (1988) Free living marine nematodes. Part II British chromadorids. Linnean Society of London and The Estuarine Brakish-water Sciences Association by Cambridge University Press, pp 1–502

  • Pocklington P, Scott DB, Schaffer CT (1994) Polychaete response to different aquaculture activities. In: Dauvin JC, Laubier L, Reish DJ (eds) Actes de la 4ème Conférences Internationale des Polychètes. Memoires du Museum National d’histoire Naturelle (France) 162:511–520

  • Powell EN (1989) Oxygen, sulphide and diffusion: why thiobiotic meiofauna must be sulphide-insensitive first-order respirers. J Mar Res 47:887–932

    Article  CAS  Google Scholar 

  • Powers SP, Peterson CH, Christian RR et al (2005) Effects of eutrophication on bottom habitat and prey resources of demersal fishes. Mar Ecol Prog Ser 302:233–243. doi:10.3354/meps302233

    Article  Google Scholar 

  • Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282. doi:10.1086/282541

    Article  Google Scholar 

  • Sandulli R, de Nicola-Giudici M (1990) Pollution effects on the structure of meiofaunal communities in the bay of Naples. Mar Pollut Bull 21:144–153. doi:10.1016/0025-326X(90)90550-R

    Article  CAS  Google Scholar 

  • Sandulli R, de Nicola-Giudici M (1991) Responses of meiobenthic communities along a gradient of sewage pollution. Mar Pollut Bull 22:463–467. doi:10.1016/0025-326X(91)90217-G

    Article  CAS  Google Scholar 

  • Schratzberger M, Warwick RM (1998) Effects of the intensity and frequency of organic enrichment on two estuarine nematode communities. Mar Ecol Prog Ser 164:83–94. doi:10.3354/meps164083

    Article  CAS  Google Scholar 

  • Schratzberger M, Warr K, Rogers SI (2007) Functional diversity of nematode communities in the southwestern North Sea. Mar Environ Res 63:368–389. doi:10.1016/j.marenvres.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  • Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to unhydrous glycerine. Nematologica 4:67–69

    Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana, Illinois, p 111

    Google Scholar 

  • Somerfield PJ, Rees HL, Warwick RM (1995) Interrelationships in community structure between shallow water marine meiofauna and macrofauna in relation to dredging disposal. Mar Ecol Prog Ser 127:103–112. doi:10.3354/meps127103

    Article  Google Scholar 

  • Steyaert M, Moodley L, Nadong T et al (2007) Responses of intertidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345(2):175–184. doi:10.1016/j.jembe.2007.03.001

    Article  CAS  Google Scholar 

  • Terrados J, Duarte CM, Kamp-Nielsen L et al (1999) Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquat Bot 65:175–197. doi:10.1016/S0304-3770(99)00039-X

    Article  Google Scholar 

  • Tutsumi H, Kikuchi T, Tanaka M et al (1991) Benthic faunal succession in a cove organically polluted by fish farming. Mar Pollut Bull 23:233–238. doi:10.1016/0025-326X(91)90680-Q

    Article  Google Scholar 

  • Vanaverbeke J, Steyaert M, Soetaert K et al (2004) Changes in structural and functional diversity of nematode communities during a spring phytoplankton bloom in the southern North Sea. J Sea Res 52:281–292. doi:10.1016/j.seares.2004.02.004

    Article  Google Scholar 

  • Vanreusel A (1990) Ecology of the free-living marine nematodes from the Voordelta (Southern Bight of the North Sea).I Species composition and structure of the nematode communities. Cah Biol Mar 31:439–462

    Google Scholar 

  • Vincx M, Meire P, Heip C (1990) The distribution of nematode communities in the Southern Bight of the North Sea. Cah Biol Mar 31:107–129

    Google Scholar 

  • Vopel K, Dehmlow J, Artl G (1996) Vertical distribution of Cletocamptus confluens (Copepoda, Harpacticoida) in relation to oxygen and sulphide microprofiles of a brackish water sulphuretum. Mar Ecol Prog Ser 141:129–137. doi:10.3354/meps141129

    Article  CAS  Google Scholar 

  • Warwick RM, Platt HM, Somerfield PJ (1998) Free living marine nematodes. Part III British monysterids. Linnean Society of London and The Estuarine Brakish-water Sciences Association by Cambridge University Press, pp 1–296

  • Widdicombe S, Austen MC (2001) The interaction between physical disturbance and organic enrichment: an important element in structuring benthic communities. Limnol Oceanogr 46:1720–1733

    Google Scholar 

  • Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv Zool 2(4):439–484

    Google Scholar 

  • Wu RSS, Lam KS, MacKay DW et al (1994) Impact of marine fish farming on water quality and bottom sediment: a case study in the sub-tropical environment. Mar Environ Res 38:115–145. doi:10.1016/0141-1136(94)90004-3

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the frame of the project MedVeg (Q5RS-2001-02456). The authors thank Italian research grants FIRB 2001 (RBAU 012 KXA_009) funded by MIUR. This work is a contribution to the NoE MARBEF, financially supported by the EU. The authors are indebted to Antonio Pusceddu for support in the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Danovaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambi, C., Bianchelli, S., Pérez, M. et al. Biodiversity response to experimental induced hypoxic-anoxic conditions in seagrass sediments. Biodivers Conserv 18, 33–54 (2009). https://doi.org/10.1007/s10531-008-9433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9433-1

Keywords

Navigation