Skip to main content
Log in

Diversity and geographic distribution of ciliates (Protista: Ciliophora)

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

About 4,500 free-living ciliate morphospecies have been described, applying an average synonymy rate of 20%. We estimate that 83–89% of the ciliate diversity is still undescribed, using the following probabilities: detailed habitat studies suggest that the described number of morphospecies must be doubled: 4,500 → 9,000; this figure has to be increased by about 50% due to species with similar interphase morphology but different resting cysts: 9,000 → 13,500; the genetic and molecular data suggest that this value must be doubled or trebled: 13,500 → 27,000 to 40,000 free-living, biological ciliate species. The knowledge on geographic distribution of ciliates heavily depends on flagship species and statistical analyses because reliable faunistic studies are rare and molecular data are still in its infancy. We present a list of 52 ciliate flagship species as a testable hypothesis, i.e., the hypothesis of restricted distribution of certain ciliate species must be refused when a considerable number of them is found in all or most biogeographic regions. Flagship species and statistical analyses consistently show Gondwanan and Laurasian ciliate communities, suggesting that the split of Pangaea deeply influenced ciliate distribution and rare species play a key role in geographic differentiation. However, there is also substantial evidence for continental, regional, and local endemism of free-living ciliates. The molecular studies usually show a high level of genetic diversity underlying ciliate morphospecies, suggesting that morphologic and molecular evolution may be decoupled in many ciliate species. Molecular studies on ciliate biogeography are at variance, possibly because most are still focusing on single molecular markers. In sum, the data indicate that ciliate biogeography is similar to that of plants and animals, but with an increased proportion of cosmopolites, favouring the moderate endemicity model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figs. 2–4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aescht E (2001) Catalogue of the generic names of ciliates (Protozoa, Ciliophora). Denisia 1:1–350

    Google Scholar 

  • Agatha S, Strüder-Kypke MC, Beran A et al (2005) Pelagostrobilidium neptuni (Montagnes and Taylor, 1994) and Strombidium biarmatum nov. spec. (Ciliophora, Oligotrichea): phylogenetic position inferred from morphology, ontogenesis and gene sequence data. Eur J Protistol 41:65–83

    Article  Google Scholar 

  • Barth D, Krenek S, Fokin SI et al (2006) Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome c oxidase I sequences. J Eukaryot Microbiol 53:20–25

    Article  PubMed  CAS  Google Scholar 

  • Berger H (1999) Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Monographiae Biol 78:i–xii, 1–1080

  • Berger H (2006) Monograph of the Urostyloidea (Ciliophora, Hypotricha). Monographiae Biol 85:i–xv, 1–1303

  • Berger H, Al-Rasheid KAS, Foissner W (2006) Morphology and cell division of Saudithrix terricola n. gen., n. sp., a large, stichotrich ciliate from Saudi Arabia. J Eukaryot Microbiol 53:260–268

    Article  PubMed  Google Scholar 

  • Chao A, Li PC, Agatha S et al (2006) A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114:479–493

    Article  Google Scholar 

  • Corliss JO (1979) The ciliated protozoa, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Corliss JO (2000) Biodiversity, classification, and numbers of species of protists. In: Raven PH, Williams T (eds) Nature and human society. The quest for a sustainable world. National Academy Press, Washington, pp 130–155

    Google Scholar 

  • Dini F, Nyberg D (1993) Sex in ciliates. In: Jones JG (ed) Advances in microbial ecology, vol 13, Plenum Press, New York, pp 85–153

    Google Scholar 

  • Dragesco J (1999) Revision des Geléiides (Ciliophora, Karyorelictea). Stapfia 66:1–91

    Google Scholar 

  • Dragesco J, Dragesco-Kernéis A (1986) Ciliés libres de l’Afrique intertropicale. Faune Trop 26:1–559

    Google Scholar 

  • Dragesco J, Dragesco-Kernéis A (1991) Free-living ciliates from the coastal area of Lake Tanganyika (Africa). Eur J Protistol 26:216–235

    Google Scholar 

  • Esteban GF, Finlay BJ, Olmo JL et al (2000) Ciliated protozoa from a volcanic crater-lake in Victoria, Australia. J Nat Hist (London) 34:159–189

    Google Scholar 

  • Finlay BJ, Corliss JO, Esteban G et al (1996) Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q Rev Biol 71:221–237

    Article  Google Scholar 

  • Finlay BJ, Esteban GF, Fenchel T (2004) Protist diversity is different? Protist 155:15–22

    Article  PubMed  Google Scholar 

  • Finlay BJ, Esteban GF, Brown S et al (2006) Multiple cosmopolitan ectotypes within a microbial eukaryote morphospecies. Protist 157:377–390

    Article  PubMed  CAS  Google Scholar 

  • Foissner W (1991) Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. Eur J Protistol 27:313–330

    Google Scholar 

  • Foissner W (1993a) Colpodea (Ciliophora). Protozoenfauna 4/1:i–x, 1–798

  • Foissner W (1993b) Corticocolpoda kaneshiroae n. g., n. sp., a new colpodid ciliate (Protozoa, Ciliophora) from the bark of Ohia trees in Hawaii. J Eukaryot Microbiol 40:764–775

    Article  Google Scholar 

  • Foissner W (1994) Morphology and morphogenesis of Circinella arenicola nov. gen., nov. spec., a cephalized hypotrich (Ciliophora, Hypotrichida) from sand dunes in Utah, USA. Eur J Protistol 30:156–170

    Google Scholar 

  • Foissner W (1997) Global soil ciliate (Protozoa, Ciliophora) diversity: a probability-based approach using large sample collections from Africa, Australia and Antarctica. Biodivers Conserv 6:1627–1638

    Article  Google Scholar 

  • Foissner W (1998) An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. Eur J Protistol 34:195–235

    Google Scholar 

  • Foissner W (1999a) Description of two new, mycophagous soil ciliates (Ciliophora, Colpodea): Fungiphrya strobli n. g., n. sp. and Grossglockneria ovata n. sp. J Eukaryot Microbiol 46:34–42

    Article  Google Scholar 

  • Foissner W (1999b) Protist diversity: estimates of the near-imponderable. Protist 150:363–368

    Article  PubMed  CAS  Google Scholar 

  • Foissner W (2003) Morphology and ontogenesis of Bromeliophrya brasiliensis gen. n., sp. n., a new ciliate (Protozoa: Ciliophora) from Brazilian tank bromeliads (Bromeliaceae). Acta Protozool 42:55–70

    Google Scholar 

  • Foissner W (2004a) Some new ciliates (Protozoa, Ciliophora) from an Austrian floodplain soil, including a giant, red “flagship”, Cyrtohymena (Cyrtohymenides) aspoecki nov. subgen., nov. spec. Denisia 13:369–382

    Google Scholar 

  • Foissner W (2004b) Ubiquity and cosmopolitanism of protists questioned. SILnews 43:6–7

    Google Scholar 

  • Foissner W (2005) Two new “flagship” ciliates (Protozoa, Ciliophora) from Venezuela: Sleighophrys pustulata and Luporinophrys micelae. Eur J Protistol 41:99–117

    Article  Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Foissner W (2007) Dispersal and biogeography of protists: recent advances. Jpn J Protozool 40:1–16

    Google Scholar 

  • Foissner W, Berger H (1999) Identification and ontogenesis of the nomen nudum hypotrichs (Protozoa: Ciliophora) Oxytricha nova (= Sterkiella nova sp. n.) and O. trifallax (= S. histriomuscorum). Acta Protozool 38:215–248

    Google Scholar 

  • Foissner W, Stoeck T (2006) Rigidothrix goiseri nov. gen., nov. spec. (Rigidotrichidae nov. fam.), a new “flagship” ciliate from the Niger floodplain breaks the flexibility-dogma in the classification of stichotrichine spirotrichs (Ciliophora, Spirotrichea). Eur J Protistol 42:249–267

    Article  PubMed  Google Scholar 

  • Foissner W, Wölfl S (1994) Revision of the genus Stentor Oken (Protozoa, Ciliophora) and description of S. araucanus nov. spec. from South American lakes. J Plankton Res 16:255–289

    Article  Google Scholar 

  • Foissner W, Xu K (2006) Monograph of the Spathidiida (Ciliophora, Haptoria) Vol. I: Protospathidiidae, Arcuospathidiidae, Apertospathulidae. Monographiae Biol 81:i–ix, 1–485

  • Foissner W, Agatha S, Berger H (2002) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert. Denisia 5:1–1459

    Google Scholar 

  • Foissner W, Strüder-Kypke M, van der Staay GWM et al (2003) Endemic ciliates (Protozoa, Ciliophora) from tank bromeliads: a combined morphological, molecular, and ecological study. Eur J Protistol 39:365–372

    Article  Google Scholar 

  • Foissner W, Berger H, Xu K et al (2005) A huge, undescribed soil ciliate (Protozoa: Ciliophora) diversity in natural forest stands of Central Europe. Biodivers Conserv 14:617–701

    Article  Google Scholar 

  • Gerber CA, Lopez AB, Shook SJ et al (2002) Polymorphism and selection at the SerH immobilization antigen locus in natural populations of Tetrahymena thermophila. Genetics 160:1469–1479

    PubMed  CAS  Google Scholar 

  • Green J, Holmes AJ, Westoby M et al (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–753

    Article  PubMed  CAS  Google Scholar 

  • Hausmann K, Selchow P, Scheckenbach F et al (2006) Cryptic species in a morphospecies complex of heterotrophic flagellates: the case study of Caecitellus spp. Acta Protozool 45:415–431

    Google Scholar 

  • Hillebrand H, Watermann F, Karez R et al (2001) Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126:114–124

    Article  Google Scholar 

  • Hori M, Tomikawa I, Przyboś E, Fujishima M (2006) Comparison of the evolutionary distances among syngens and sibling species of Paramecium. Mol Phylogent Evol 38:697–704

    Article  CAS  Google Scholar 

  • de Jonckheere JF, Brown S (2005) Description of a new species with a remarkable cyst structure in the genus Naegleria: Naegleria angularis sp. n. Acta Protozool 44:61–65

    Google Scholar 

  • Katz LA, McManus GB, Snoeyenbos-West LO et al (2005) Reframing the “everything is everywhere” debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquat Microb Ecol 41:55–65

    Article  Google Scholar 

  • Katz LA, Snoeyenbos-West OLO, Doerder FP (2006) Unusual patterns of molecular evolution at the SerH surface antigen locus in Tetrahymena thermophila: implication for estimates of effective population size. Mol Biol Evol 23:608–614

    Article  PubMed  CAS  Google Scholar 

  • Kreutz M, Foissner W (2006) The Sphagnum ponds of Simmelried in Germany: a biodiversity hot-spot for microscopic organisms. Protozool Monogr 3:1–267

    Article  CAS  Google Scholar 

  • Laval-Peuto M (1981) Construction of the lorica in Ciliata Tintinnina. In vivo study of Favella ehrenbergii: variability of the phenotypes during the cycle, biology, statistics, biometry. Protistologica 17:242–279

    Google Scholar 

  • Lobban CS, Schefter M, Simpson AGB et al (2002) Maristentor dinoferus n. gen., n. sp., a giant heterotrich ciliate (Spirotrichea: Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar Biol 140:411–423

    Article  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Lynn D, Strüder-Kypke MC (2006) Species of Tetrahymena identical by small subunit rRNA gene sequences are discriminated by mitochondrial cytochrome c oxidase I gene sequences. J Eukaryot Microbiol 53:385–387

    Article  PubMed  CAS  Google Scholar 

  • Miao W, Yu Y, Shen Y et al (2004) Intraspecific phylogeography of Carchesium polypinum (Peritrichia, Ciliophora) from China, inferred from 18S-ITS1-5.8S ribosomal DNA. Sci China, C Life Sci 47:11–17

    Article  CAS  Google Scholar 

  • Nanney DL, Park C, Preparata R et al (1998) Comparison of the sequence differences in a variable 23S rRNA domain among sets of cryptic species of ciliated Protozoa. J Eukaryot Microbiol 45:91–100

    Article  PubMed  CAS  Google Scholar 

  • Obolkina LA (1995) New species of the family Colepidae (Prostomatida, Ciliophora) from Lake Baikal. Zool Zh 74:3–19 (in Russian)

    Google Scholar 

  • Petz W, Song W, Wilbert N (1995) Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddell Sea, Antarctica. Stapfia 4:1–223

    Google Scholar 

  • Popper K (1962) The logic of scientific discovery. Harper and Row, New York

    Google Scholar 

  • Raikov IB (1972) Nuclear phenomena during conjugation and autogamy in ciliates. In: Chen T-T (ed) Research in protozoology vol 4. Pergamon Press, New York, pp 146–289

    Google Scholar 

  • Řezácová M, Neustupa J (2007) Distribution of the genus Mallomonas (Synurophyceae) – ubiquitous dispersal in microorganisms evaluated. Protist 158:29–37

    Article  PubMed  Google Scholar 

  • Schmidt SL, Ammermann D, Schlegel M et al (2006) Stylonychia lemnae strains from North American sites differ in a single nucleotide within the small subunit rDNA from Eurasian strains. J Eukaryot Microbiol 53:308–309

    Article  PubMed  CAS  Google Scholar 

  • Snoeyenbos-West OLO, Salcedo T, McManus GB et al (2002) Insights into the diversity of choreotrich and oligotrich ciliates (Class: Spirotrichea) based on genealogical analyses of multiple loci. Int J Syt Evol Microbiol 52:1901–1913

    Article  CAS  Google Scholar 

  • Snoke MS, Berendonk TU, Barth D et al (2006) Large global effective population sizes in Paramecium. Mol Biol Evol 23:2474–2479

    Article  PubMed  CAS  Google Scholar 

  • Song W, Wang M (1999) New name list of marine ciliates in China. In: Song W (ed) Progress in protozoology. Qingdao Ocean University Press, Qingdao, China, pp 65–76

    Google Scholar 

  • Song W, Wilbert N (2002) Faunistic studies on marine ciliates from the Antarctic benthic area, including descriptions of one epizoic form, 6 new species and 2 new genera (Protozoa: Ciliophora). Acta Protozool 41:23–61

    Google Scholar 

  • Song W, Zhao Y, Xu K et al (2003) Pathogenic protozoa in mariculture. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Stoeck T, Bruemmer F, Foissner W (2007) Evidence for local ciliate endemism in an alpine anoxic lake. Microb Ecol (in press)

  • Strüder-Kypke MC, Wright AG, Fokin SI et al (2000) Phylogenetic relationships of the genus Paramecium inferred from small subunit rRNA gene sequences. Mol Phylogenet Evol 14:122–130

    Article  PubMed  CAS  Google Scholar 

  • Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for microbial morphospecies. Science 312:1015

    Article  PubMed  CAS  Google Scholar 

  • Tyler PA (1996) Endemism in freshwater algae with special reference to the Australian region. Hydrobiologia 336:1–9

    Google Scholar 

  • Weisse T (2004) Pelagic microbes – protozoa and the microbial food web. In: O´Sullivan P, Reynolds CR (eds) The lakes handbook, vol I. Blackwell, Oxford, pp 417–460

    Google Scholar 

  • Weisse T, Rammer S (2006) Pronounced ecophysiological clonal differences of two common freshwater ciliates, Coleps spetai (Prostomatida) and Rimostrombidium lacustris (Oligotrichida), challenge the morphospecies concept. J Plankton Res 28:55–63

    Article  Google Scholar 

  • Xu D, Song W, Lin X et al (2006) On two marine oligotrich ciliates, Spirostrombidium agathae n.sp. and S. schizostomum (Kahl, 1932) n. comb. from China, with a key to the identification of seven well-characterized Spirostrombidium spp. (Ciliophora: Oligotrichida). Acta Protozool 45:433–442

    Google Scholar 

  • Xu K, Foissner W (2005) Descriptions of Protospathidium serpens (Kahl, 1930) and P. fraterculum n.sp. (Ciliophora, Haptoria), two species based on different resting cyst morphology. J Eukaryot Microbiol 52:298–309

    Article  PubMed  Google Scholar 

  • Zhang W-J, Yang J, Yu Y-H et al (2006) Population genetic structure of Carchesium polypinum (Ciliophora: Peritrichia) in four Chinese lakes inferred from ISSR fingerprinting: high diversity but low differentiation. J Eukaryot Microbiol 53:358–363

    Article  PubMed  CAS  Google Scholar 

  • Zufall RA, McGrath C, Muse SV et al (2006) Genome architecture drives protein evolution in ciliates. Mol Biol Evol 23:1681–1687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Austrian Science Foundation (FWF, projects P-15017 and P-19699-B17), the Taiwan National Science Council (projects NSC-94-2118-M006-001, 95-2118-M007-003), and the United States National Science Foundation (LAK DEB-0092908 and DEB-043115). The technical assistance of Mag. Birgit Peukert and Mag. Gudrun Fuss is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Foissner.

Additional information

Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foissner, W., Chao, A. & Katz, L.A. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers Conserv 17, 345–363 (2008). https://doi.org/10.1007/s10531-007-9254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9254-7

Keywords

Navigation