Skip to main content

The Pollen Tube: A Model System for Cell and Molecular Biology Studies

  • Chapter
  • First Online:
The Pollen Tube

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 3))

Abstract

Pollen tubes, the active male gametophytes of seed plants, are the vectors carrying the male sperm cells to the egg cell of the female gametophyte in the ovules of seed plants. Unlike most plant cells in which growth occurs by modification of the existing wall and the insertion of new material throughout its surface, pollen tubes extend strictly at their apex, undergoing a specialized type of growth called tip growth. Consequently, these cells exhibit a highly asymmetric functional behaviour in processes such as ion fluxes, secretion, wall assembly and cytoskeletal arrangements. This spatial segregation is very attractive for cell biology studies. But the pollen tube can also be regarded as a single haploid cell carrying the sperm cells and thus of great interest for genetical and molecular studies. Last, but not least, pollen is easy to germinate under in vitro conditions, where tubes can grow extremely rapid, making it accessible to application of a wide range of technologies. Therefore, it stands as an ideal system for cell and molecular studies. Here I review some of the basic concepts of pollen tube growth (which are thoroughly discussed in subsequent chapters), address current paradigms and how these are likely to be challenged by recent data that stress how dynamic these cells are.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artalejo CR, Henley JR, McNiven MA, Palfrey HC (1995) Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin but not clathrin. Proc Natl Acad Sci USA 92:8328–8332

    Article  CAS  PubMed  Google Scholar 

  2. Camacho L, Malhó R (2003) Endo-exocytosis in the pollen tube apex is diferentially regulated by Ca2+and GTPases. J Exp Bot 54:83–92

    Article  CAS  PubMed  Google Scholar 

  3. Cheung AY, Chen CY-h, Glaven RH, de Graaf BHJ, Vidali L, Hepler PK, Wu H-M (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and Golgi bodies and is important to pollen tube growth. Plant Cell 14:945–962

    Article  CAS  PubMed  Google Scholar 

  4. Cooke CJ, Smith CJ, Walton TJ, Newton RP (1994) Evidence that cyclic AMP is involved in the hypersensitive response of Medicago sativa to a fungal elicitor. Phytochem 35:889–895

    Article  CAS  Google Scholar 

  5. Cole R, Synek L, Zarsky V, Fowler J (2005) SEC8, a Subunit of the Putative Arabidopsis Exocyst Complex, Facilitates Pollen Germination and Competitive Pollen Tube Growth. Plant Physiol 138:2005–2018

    Article  CAS  PubMed  Google Scholar 

  6. Cresti M, Pacini E, Ciampolini F, Sarfatti G (1977) Germination and early tube development in vitro of Lycopersicon peruvianum pollen: ultrastructural features. Planta 136:239–247

    Article  Google Scholar 

  7. Derksen J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES, Rongen G (1995) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188:267–276

    Article  Google Scholar 

  8. Desrivières S, Cooke FT, Morales-Johansson H, Parker PJ, Hall MN (2002) Calmodulin controls organization of the actin cytoskeleton via regulation of phosphatidylinositol (4,5)-bisphosphate synthesis in Saccharomyces cerevisiae. Biochem J 366:945–951

    PubMed  Google Scholar 

  9. Feijó JA, Shipley AM, Jaffe LF (1994) Spatial and temporal patterns of electric and ionic currents around in vitro germinating pollen of lily. In: Heberle-Bors E, Hesse M, Vicente O (eds) Frontiers in Sexual Plant Reproduction. University of Vienna, Austria 40

    Google Scholar 

  10. Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma. 187:155–167

    Article  Google Scholar 

  11. Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  CAS  PubMed  Google Scholar 

  12. Harmon AC, Gribskov M, Harper JF (2000) CDPKs – a kinase for every Ca2+signal? Trends Plant Sci 5:154–159

    Article  CAS  PubMed  Google Scholar 

  13. Heslop-Harrison J (1987) Pollen germination and pollen tube growth. Int Rev Cytol 107:1–78

    Article  Google Scholar 

  14. Homann U, Tester M (1997) Ca2+-independent and Ca2+=GTP-binding protein-controlled exocytosis in a plant cell. Proc Natl Acad Sci USA 94:6565–6570

    Article  CAS  PubMed  Google Scholar 

  15. Hwang I, Harper JF, Liang F, Sze H (2000) Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain. Plant Physiol 122:157–167

    Article  CAS  PubMed  Google Scholar 

  16. Kang B-H, Rancour DM, Bednarek SY (2003) The dynamin-like protein ADL1C is essential for plasma membrane maintenance during pollen maturation. Plant J 35:1–15

    Article  CAS  PubMed  Google Scholar 

  17. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua M-H (1999) Rac homologues and compartmentalized phosphatidilinositol 4,4-biphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  CAS  PubMed  Google Scholar 

  18. Malhó R, Camacho L (2004) Signalling the cytoskeleton in pollen tube germination and growth. In: Hussey PJ (ed) The Plant Cytoskeleton in Cell Differentiation and Development. Annu Plant Review Series. Blackwell Publishers, UK, p 240–264

    Google Scholar 

  19. Malhó R, Camacho L, Moutinho A (2000) Signalling pathways in pollen tube growth and reorientation. Ann Bot 85(suppl A):59–68

    Google Scholar 

  20. Malhó R, Castanho Coelho P, Pierson E, Derksen J (2005) Endocytosis and membrane recycling in pollen tubes. In: Samaj J, Baluska F, Menzel D (eds) The Plant Endocytosis. Springer-Verlag, Germany, p 277–291

    Chapter  Google Scholar 

  21. Malhó R, Pais MS (1992) Kinetics and hydrodynamics of Agapanthus umbellatus pollen tube. A structural and stereological study. Sex Plant Reprod 5:163–168

    Google Scholar 

  22. Malhó R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    Article  PubMed  Google Scholar 

  23. Monteiro D, Castanho Coelho P, Rodrigues C, Camacho L, Quader H, Malhó R (2005a) Modulation of endocytosis in pollen tube growth by phosphoinositides and phospholipids. Protoplasma 226:31–38

    Google Scholar 

  24. Monteiro D, Liu Q, Lisboa S, Scherer GEF, Quader H, Malhó R (2005b) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+] c and membrane secretion. J Exp Bot 56:1665–1674

    Google Scholar 

  25. Moutinho A, Hussey P, Trewavas AJ, Malhó R (2001) The role of cAMP and adenylate cyclase in pollen tube growth and reorientation. Proc Natl Acad Sci USA 98:10481–10486

    Article  CAS  PubMed  Google Scholar 

  26. Moutinho A, Love J, Trewavas AJ, Malhó R (1998) Distribution of calmodulin protein and mRNA in growing pollen tubes. Sex Plant Reprod 11:131–139

    Article  CAS  Google Scholar 

  27. Moutinho A, Trewavas AJ, Malhó R (1998a) Relocation of a Ca2+-Dependent Protein Kinase activity during Pollen Tube Reorientation. Plant Cell 10:1499–1510

    Google Scholar 

  28. Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl I (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    Article  CAS  PubMed  Google Scholar 

  29. Pertl H, Himly M, Gehwolf R, Kriechbaumer R, Strasser D, Michalke W, Richter K, Ferreira F, Obermeyer G (2001) Molecular and physiological characterisation of a 14-3-3 protein from lily pollen grains regulating the activity of the plasma membrane H+ ATPase during pollen grain germination and tube growth. Planta 213:132–141

    Article  CAS  PubMed  Google Scholar 

  30. Prado AM, Porterfield M, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714

    Article  CAS  PubMed  Google Scholar 

  31. Putnam-Evans C, Harmon AC, Palevitz BA, Fechheimer M, Cormier MJ (1989) Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Mot Cytosk 12:12–22

    CAS  Google Scholar 

  32. Rato C, Monteiro D, Hepler PK, Malhó R (2004) Calmodulin activity and cAMP signalling modulate growth and apical secretion in pollen tubes. Plant J 38:887–897

    Article  CAS  PubMed  Google Scholar 

  33. Roy SJ, Holdaway-Clarke TL, Hackett GR, Kunkel JG, Lord EM, Hepler PK (1999) Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant J 19:379–386

    Article  CAS  PubMed  Google Scholar 

  34. Sanders LC, Lord EM (1992) A dynamic role for the stylar matrix in pollen tube extension. Int Rev Cytol 140:297–318

    Article  Google Scholar 

  35. Steer MW, Steer JL (1989) Pollen tube tip growth. New Phytol 111:323–358

    Article  Google Scholar 

  36. Van der Hoeven PCJ, Siderius M, Korthout HAAJ, Drabkin AV, De Boer AH (1996) A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor. Plant Physiol 111:857–865

    Article  PubMed  Google Scholar 

  37. Volotovski ID, Sokolovsky SG, Molchan OV, Knight MR (1998) Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol 117:1023–1030

    Article  CAS  PubMed  Google Scholar 

  38. Wilson C, Heberle-Bors E (2000) MAP kinases in pollen. In: Hirt H (ed) MAP kinases in plant signal transduction. Springer-Verlag, Berlin Heidelberg New York, p 39–51

    Google Scholar 

  39. Zheng Z-L, Yang Z (2000) The Rop GTPase switch turns on polar growth in pollen. Trends Plant Sci 5:298–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

To all “my people” in the lab for their support and comprehension. Work in RM lab is supported by a UE TMR grant (TIPNET) and Fundação Ciência e Tecnologia, Lisboa, Portugal (Grant No BIA-BCM/56997/2004; FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Malhó .

Editor information

Rui Malhó

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Malhó, R. The Pollen Tube: A Model System for Cell and Molecular Biology Studies. In: Malhó, R. (eds) The Pollen Tube. Plant Cell Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_041

Download citation

Publish with us

Policies and ethics