Skip to main content

Advertisement

Log in

Hotspots and richness pattern of grasshopper species in cultural landscapes

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The success of the hotspot approach for biodiversity conservation depends on the spatial scale and the indicator species used. In this study, we investigated grasshopper species richness in Switzerland at a 1 ha resolution including a total of 111 species. We compared the representativeness of common and of endangered grasshopper species for the overall grasshopper species richness and we assessed the efficiency of the hotspot approach for grasshopper conservation. The pattern of overall grasshopper species richness was well represented by both the number of common and the number of endangered grasshopper species. For evaluating the efficiency of different hotspot approaches for conservation, we compared hotspots of common species, hotspots of endangered species (rarity hotspots), and hotspots of all grasshopper species (richness hotspots). Among these hotspot types, richness hotspots not only featured most common grasshopper species, but they even contained more endangered species than the rarity hotspots. The combination of rarity hotspots and hotspots of common species featured more species than the other combinations of hotspot types. However, the gain of combining two hotspot types compared to the single-hotspot approach was low (max. 3 species). About 24% of the species were not contained in any of the hotspots. These grasshopper species require species-specific action plans. As rarity hotspots were located in areas that are rather strongly affected by landscape change, species richness in rarity hotspots may decrease in the future. We conclude that, for grasshoppers, the hotspot approach on the 1 ha scale can be an effective way to conserve a high proportion of species richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armsworth PR, Kendall BE, Davis FW (2004) An introduction to biodiversity concepts for environmental economists. Resour Energy Econ 26:115–136

    Article  Google Scholar 

  • Austad I (2000) The future of traditional agricultural landscapes: retaining desirable qualities. In: Klijn J, Vos W (eds) From landscape ecology to landscape science. Kluwer, Dordrecht, pp 43–56

    Google Scholar 

  • Bätzing W (1996) Landwirtschaft im Alpenraum unverzichtbar, aber zukunftslos? Eine alpenweite Bilanz der aktuellen Probleme und der möglichen Lösungen. Landwirtschaft im Alpenraum – unverzichtbar, aber zukunftslos? In: Bätzig W (ed) Europäische Akademie Bozen, Fachbereich Alpine Umwelt, Blackwell, Wien, Benton, 2002, pp 9–11

  • Berg Å, Tjernberg M (1996) Common and rare Swedish vertebrates – distribution and habitat preferences. Biodiv Conserv 5:101–128

    Article  Google Scholar 

  • Bonn A, Rodrigues ASL, Gaston KJ (2002) Threatened and endemic species: are they good indicators of patterns of biodiversity on a national scale? Ecol Lett 5:733–741

    Article  Google Scholar 

  • Bötsch M (1998) Das Agrar-Umweltprogramm der Schweiz. Schriftenreihe Landesanstalt für Pflanzenbau und Pflanzenschutz 6:25–43

    Google Scholar 

  • Cabeza M, Moilanen A (2003) Site-selection algorithms and habitat loss. Conserv Biol 17:1402–1413

    Article  Google Scholar 

  • Desender K, Turin H (1989) Loss of habitats and changes in the composition of the ground and tiger beetle fauna in four west European countries since 1950 (Coleoptera: Carabidae, Cicindelidae). Bio Conserv 48:277–294

    Article  Google Scholar 

  • Duelli P, Obrist MK (1997) In search for the best correlates for local organismal biodiversity in cultivated areas. Biodiv Conserv 7:297–309

    Article  Google Scholar 

  • Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98

    Article  Google Scholar 

  • Forni D, Gujer HU, Nyffenegger L, Vogel S, Gantner U (1999) Evaluation der Ökomassnahmen und Tierhaltungsprogramme. Agrarforschung 6:107–110

    Google Scholar 

  • Gaston KJ, Blackburn TM (1996) The spatial distribution of threatened species: macroscales and new world birds. Proc R Soc Lond B 263:235–240

    Article  Google Scholar 

  • Gjerde I, Sætersdal M, Rolstad J, Blom HH, Storaunet KO (2004) Fine-scale diversity and rarity hotspots in northern forests. Conserv Biol 18:1032–1042

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666–673

    Article  Google Scholar 

  • Herzog F, Dreier S, Hofer G, Marfurt C, Schüpbach B, Spiess M, Walter T (2005) Effect of ecological compensation areas on floristic and breeding bird diversity in Swiss agricultural landscapes. Agric Ecosyst Environ 108:189–204

    Article  Google Scholar 

  • Hubbell SP (2001) A unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • ISCBD (1994) Convention on biological diversity. UNEP

  • Jacquemyn H, Butaye J, Hermy M (2003) Influence of environmental and spatial variables on regional distribution of forest plant species in a fragmented and changing landscape. Ecography 26:768–776

    Article  Google Scholar 

  • Jepson P, Canney S (2001) Biodiversity hotspots: hot for what? Global Ecol Biogeogr 10:225–227

    Article  Google Scholar 

  • Jetz W, Rahbeck C (2002) Geographic range size and determinants of avian species richness. Science 297:1548–1551

    Article  PubMed  CAS  Google Scholar 

  • Kareiva P, Marvier M (2003) Conserving biodiversity coldspots. Am Sci 91:344

    Article  Google Scholar 

  • Kati V, Devillers P, Dufrêne M, Legakis A, Vokou D, Lebrun P (2004) Hotspots, complementary or representativeness? Designing optimal small-scale reserves for biodiversity conservation. Biol Conserv 120:471–480

    Article  Google Scholar 

  • Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969

    Article  Google Scholar 

  • Knop E, Kleijn D, Herzog F, Schmid B (2006) Effectiveness of the Swiss agri-environment scheme in promoting biodiversity. J Appl Ecol 43:120–127

    Article  Google Scholar 

  • Köhler G, Detzel P, Mass S (2003) Kriterian des Aussterbens––eine Eröterung anhand der in den Bundesländern augestorbenen Heuschreckenarten (Ensifera, Celifera). Articulata 18:109–138

    Google Scholar 

  • Lehmann A, Leathwick JR, Overton JM (2002) Assessing New Zealand fern diversity from spatial predictions of species assemblages. Biodiv Conserv 11:2217–2238

    Article  Google Scholar 

  • Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2004) Contribution of rarity and commoness to patterns of species richness. Ecol Lett 7:81–87

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Google Scholar 

  • Maes D, Gilbert M, Titeux N, Goffart P, Dennis RLH (2003) Prediction of butterfly diversity hotspots in Belgium: a comparison of statistically focused and land use-focused models. J Biogeogr 30:1907–1920

    Article  Google Scholar 

  • Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716

    Article  PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337

    Article  Google Scholar 

  • Ricketts TH, Dinerstein E, Olson DM, Loucks C (1999) Who’s where in North America? Bioscience 49:369–381

    Article  Google Scholar 

  • Roy M, Pascual M, Levin SA (2004) Competitive coexistence in a dynamic landscape. Theor Popul Biol 66:341–353

    Article  PubMed  Google Scholar 

  • Sauberer N, Zulka KP, Abensberg-Traun M, Berg H-M, Bieringer G, Milasowszky N, Moser D, Plutzar C, Pollheimer M, Storch C, Tröstl R, Zechmeister H, Grabherr G (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol Conserv 117:181–190

    Article  Google Scholar 

  • Swiss Federal Statistical Office (2001) The changing face of land use – Land use statistics of Switzerland. SFSO, Neuchâtel

    Google Scholar 

  • Thomas CD, Mallorie HC (1985) Rarity, species richness and conservation: butterflies of the Atlas Mountains in Morocco. Biol Conserv 33:95–117

    Article  Google Scholar 

  • Thorens P, Nadig A (1994) Rote Liste der gefährdeten Heuschrecken der Schweiz. In: Duelli P (ed) Rote Listen der gefährdeten Tierarten in der Schweiz. BUWAL-Reihe Rote Listen, EDMZ, Bern, pp 66–68

    Google Scholar 

  • Thorens P, Nadig A (1997) Verbreitungsatlas der Orthopteren der Schweiz. Doc Faunistica Helv 16:236

    Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment l imitation, and grassland biodiversity. Ecology 78:81–92

    Article  Google Scholar 

  • Werner U, Buszko J (2005) Detecting biodiversity hotspots using species-area and endemics-area relationships: the case of butterflies. Biodiv Conserv 14:1977–1988

    Article  Google Scholar 

  • Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1998) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for helpful comments on the manuscript. We would also like to thank P. Marchesi and E. Wermeille for the authorisation to use data of their grasshopper surveys, F. Kienast for climate-data, L. Gygax for statistical support, the Swiss Biological Records Centre (CSCF Neuchâtel) for their cooperation, and S. Dingwall for improving our English. This research was supported by the Swiss Agency for the Environment, Forests and Landscape (SAEFL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude E. Steck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steck, C.E., Bürgi, M., Coch, T. et al. Hotspots and richness pattern of grasshopper species in cultural landscapes. Biodivers Conserv 16, 2075–2086 (2007). https://doi.org/10.1007/s10531-006-9089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-006-9089-7

Keywords

Navigation