Skip to main content

Advertisement

Log in

Elevational gradients of diversity for lizards and snakes in the Hengduan Mountains, China

  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Comparing elevational gradients across a wide spectrum of climatic zones offers an ideal system for testing hypotheses explaining the altitudinal gradients of biodiversity. We document elevational patterns of lizard and snake species richness, and explore how land area and climatic factors may affect species distributions of lizards and snakes. Our synthesis found 42 lizard species and 94 snake species known from the Hengduan Mountains. The lizards are distributed between 500 and 3500 m, and the snakes are distributed between 500 and 4320 m. The relationship between species richness and elevation for lizards and snakes is unimodal. Land area explains a significant amount of the variation in lizard and snake species richness. The cluster analysis reveals pronounced distinct assemblages for lizards and snakes to better reflect the vertical profiles of climate in the mountains. Climatic variables are strongly associated with lizard and snake richness along the elevational gradient. The data strongly implicate water availability as a key constraint on lizard species richness, and annual potential evapotranspiration is the best predictor of snake species richness along the elevational gradient in the Hengduan Mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angilletta M.J., Niewiarowski P.H. and Navas C.A. (2002). The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27: 249–268

    Article  Google Scholar 

  • Austrheim G. (2002). Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway. Plant Ecol. 161: 193–205

    Article  Google Scholar 

  • Bachman S., Baker W.J., Brummitt N., Dransfield J. and Moat J. (2004). Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27: 299–310

    Article  Google Scholar 

  • Bhattarai K.R. and Vetaas O.R (2003). Variation in plant species richness of different life forms along a subtropical elevational gradient in the Hymalyas, east Nepal. Global Ecol. Biogeogr. 12: 327–340

    Article  Google Scholar 

  • Bhattarai K.R., Vetaas O.R. and Grytness J.A. (2004). Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 31: 389–340

    Google Scholar 

  • Boufford D.E. and Dyck P.P. (2000). South-central China. In: Mittermeier, R.A., Myers, N. and Mittermeier, C.G. (eds) Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions, pp 338–351. CEMEX, Mexico City

    Google Scholar 

  • Brown J.H. (2001). Mammals on mountainsides: elevational patterns of diversity. Global Ecol. Biogeogr. 10: 101–109

    Article  Google Scholar 

  • Brown J.H. and Lomolino M.V. (1998). Biogeography. Sinauer, Sunderland

    Google Scholar 

  • Brown W.C. and Alcala A.C. (1961). Populations of amphibians and reptiles in the submontane and montane forest of Cuernos Negros, Philippine Islands. Ecology 42: 628–636

    Article  Google Scholar 

  • Cadle J.E. and Patton J.L. 1988. Distribution patterns of some amphibians, reptiles, and mammals of the Eastern Andean slope of Southern Peru. In: Heyer W.R. and Vanzolini P.E. (eds), Proceedings of a Workshop on Neotropical Distribution Patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp. 225–244.

  • Crawley M.J. (1993). GLIM for Ecologists. Oxford, Blackwell Scientific Publications

    Google Scholar 

  • Currie D.J. (1991). Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137: 27–49

    Article  Google Scholar 

  • Currie D.J., Francis A.P. and Kerr J.T. (1998). Some general propositions about the study of spatial patterns of species richness. Ecoscience 6: 392–399

    Google Scholar 

  • Diniz-Filho J.A.F., Bini L.M. and Hawkins B.A. (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecol. Biogeogr. 12: 53–64

    Article  Google Scholar 

  • Duellman W.E. (1988). Patterns of species diversity in anuran amphibians in the American tropics. Ann. Misso. Bot. Gard. 75: 79–104

    Article  Google Scholar 

  • Dunn G. and Everitt B.S. (1982). An Introduction to Mathematical Taxonomy. Cambridge, New York

    Google Scholar 

  • Fauth J.E., Crother B.I. and Slowinski J.B. (1989). Elevational patterns of species richness, evenness, and abundance of the Costa Rican leaf litter herpetofauna. Biotropica 21: 178–185

    Article  Google Scholar 

  • Fu C., Wu J., Wang X., Lei G. and Chen J. (2004). Patterns of diversity, altitudinal range and body size among freshwater fishes in the Yangtze River basin, China. Global Ecol. Biogeogr. 13: 543–552

    Article  Google Scholar 

  • Grytnes J.A. and Vetaas O.R. (2002). Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159: 294–304

    Article  PubMed  Google Scholar 

  • Grytnes J.A. (2003). Species richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26: 291–300

    Article  Google Scholar 

  • Hastie T.J. and Pregibon D. (1993). Generalized linear models. In: Chambers, J.M. and Hastie, T.J. (eds) Statistical Models in S, pp 195–247. Chapman & Hall, London

    Google Scholar 

  • Hawkins B.A., Field R., Cornell H.V., Currie D.J., Gue’gan J.-F., Kaufman D.M., Kerr J.T., Mittelbach G.G., Oberdorff T., O’Brein E.M., Porter E.E. and Turner J.R.G. (2003a). Energy, water, and broadscale geographic patterns of species richness. Ecology 84: 3105–3117

    Google Scholar 

  • Hawkins B.A. and Porter E.E. (2003). Water-energy balance and the geographic pattern of species richness of western Palearctic butterflies. Ecol. Entomol. 28: 678–686

    Article  Google Scholar 

  • Hawkins B.A., Porter E.E. and Diniz-Filho J.A.F. (2003b). Productivity and history as predictors of the latitudinal diversity gradient for terrestrial birds. Ecology 84: 1608–1623

    Google Scholar 

  • Heaney R.H. (2001). Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecol. Biogeogr. 10: 15–39

    Article  Google Scholar 

  • Heatwole H. (1976). Ecology of Reptiles. University of Queensland Press, St. Lucia, Australia

    Google Scholar 

  • Heatwole H. (1982). A review of structuring in herpetofaunal assemblages. In: Scott, N.J. (eds) Herpetological Communities, pp 1–19. Wildlife Research Report 13, U.S. Dept. Interior Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Heatwole H. and Taylor J. (1987). Ecology of Reptiles. Surrey Beatty & Sons Pty Limited, Chipping Norton, Australia

    Google Scholar 

  • Heyer W.R. (1967). A herpetofauna study of an ecological transect through the Cordillera de Tilaran, Costa Rica. Copeia 1967: 259–271

    Article  Google Scholar 

  • Hoffman M.T., Mingley G.F. and Cowling R.M. (1994). Plant richness is negatively related to energy availability in semi-arid Southern Africa. Biod. Lett. 2: 35–38

    Article  Google Scholar 

  • Huey R.B. and Pianka E.R. (1982). Ecological consequences of foraging mode. Ecology 62: 991–999

    Article  Google Scholar 

  • Jaccard P. (1901). Distribution de la flore alpine dans le Bassin des Dranes et dans quelques regions voisines. Bull. Soc. Vaudoise Des Sci. Nat. 37: 241–272

    Google Scholar 

  • Kattan G.H. and Franco P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. Global Ecol. Biogeogr. 13: 451–458

    Article  Google Scholar 

  • Kerr J.T., Vincent R. and Currie D.J. (1998). Lepidopteran richness patterns in North America. Ecoscience 5: 448–453

    Google Scholar 

  • Kessler M. (2000). Upslope-directed mass effect in palms along an Andean elevational gradient: a cause for high diversity at mid-elevations?. Biotropica 32: 756–759

    Article  Google Scholar 

  • Kessler M. (2001). Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biod. Conserv. 10: 1897–1921

    Article  Google Scholar 

  • Körner Ch. (2002). Mountain biodiversity, its causes and function: an overview. In: Körner, Ch. and Spehn, E.M. (eds) Mountain Biodiversity: A Global Assessment, pp 3–20. Parthenon Publishing, New York

    Google Scholar 

  • Lafon C.W. (2004). High biodiversity: an assessment of mountain biodiversity. Diversity and Distributions 10: 75–76

    Article  Google Scholar 

  • Legendre P., Dale M.R.T., Fortin M.-J., Gurevitch J., Hohn M. and Myers D. (2002). The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601–615

    Article  Google Scholar 

  • Li C., Liu S., Ran J., Sun Z., Liu Z. and Wang Y. (2003a). Survey on herprtological resources in Labahe nature reserve, Tianquan, Sichuan. Sichuan J. Zool. 22: 31–34

    CAS  Google Scholar 

  • Li S., Song Y.L. and Zeng Z.G. (2003b). Elevational gradients of small mammal diversity on the northern slopes of Mt. Qilian, China. Global Ecol. Biogeogr. 12: 449–460

    Article  Google Scholar 

  • Lieth H. (1975). Modeling the primary productivity of the world. In: Lieth, H. and Whittaker, R.H. (eds) Primary Productivity of the Biosphere, pp 237–263. Springer-Verlag, New York

    Google Scholar 

  • Liu N. (2000). Physical Geography. Science Press, Beijing, China

    Google Scholar 

  • Lobo J.M. and Halffter G. (2000). Biogeography and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera: Scarabaeoidea): a comparative study. Ann. Entomol. Soc. Am. 93: 115–126

    Article  Google Scholar 

  • Lomolino M.V. (2001). Elevational gradients of species diversity: historical and prospective views. Global Ecol. Biogeogr. 10: 3–13

    Article  Google Scholar 

  • Luddecke H. (1997). Colonization of the eastern Andes of Colombia by anurans: evidence from natural history data of Hyla labialis. Salamandra 33: 111–132

    Google Scholar 

  • Lynch J.D. (1987). Origins of the high Andean herpetological fauna. In: Vuilleumier, F. and Monasterio, M. (eds) High Altitude Tropical Biogeography, pp 478–499. Oxford University Press, Oxford

    Google Scholar 

  • McCain C.M. (2004). The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J. Biogeogr. 31: 19–31

    Google Scholar 

  • McCullagh P. and Nelder J.A. (1989). Generalized Linear Models. Chapman & Hall, London

    Google Scholar 

  • Md. Nor S. (2001). Elevational diversity patterns of small mammals on Mount KinabaluSabah, Malaysia. Global Ecol. Biogeogr. 10: 41–62

    Article  Google Scholar 

  • Meyer E. and Thaler K. (1995). Animal diversity at high altitudes in the Austrian Central Alps. Ecol. Stud. 113: 97–108

    Google Scholar 

  • Myers N., Mittermeier R.A., Mittermeier C.G., Kent J. and Fonseca G.A.B. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853–858

    Article  PubMed  CAS  Google Scholar 

  • Nathan R. and Werner Y.L. (1999). Reptiles and breeding birds on Mt. Hermon: patterns of altitudinal distribution and species richness. Israel J. Zool. 45: 1–33

    Google Scholar 

  • Navas C.A. (2003). Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comp. Biochem. Physiol. Part A 133: 469–485

    Article  Google Scholar 

  • O’Brien E.M. (1993). Climate gradients in woody plant species richness: towards an explanation based on an analysis of Southern Africa’s woody Flora. J. Biogeogr. 20: 181–198

    Article  Google Scholar 

  • Odland A. and Birks H.J.B. (1999). The altitudinal gradient of vascular plant species richness in Aurland, western Norway. Ecography 22: 548–566

    Article  Google Scholar 

  • Owen J.G. (1989). Patterns of herpetofaunal species richness: relation to temperature, precipitation and variance in elevation. J. Biogeogr. 16: 141–150

    Article  Google Scholar 

  • Pan X., Zhou W., Zhou Y., Wu F. and Zhang Q. (2002). Amphibian and reptile in Zhongdian area of northwest Yunnan. Sichuan J. Zool. 21: 88–91

    Google Scholar 

  • Patterson B.D., Stotz D.F., Solari S., Fitzpatrick J.W. and Pacheco V. (1998). Contrasting patterns of elevational zonation for birds and mammals in the Andes of south-eastern Peru. J. Biogeogr. 25: 593–607

    Article  Google Scholar 

  • Peafur J.E. and Duellman W.E. (1980). Community structure in high Andean herpetofaunas. Trans. Kansas Acad. Sci. 83: 45–65

    Article  Google Scholar 

  • Pianka E.R. (1967). On lizard species diversity: North American flatland deserts. Ecology 48: 333–351

    Article  Google Scholar 

  • Pianka E.R. (1971). Lizard species diversity in the Kalahari desert. Ecology 52: 1012–1030

    Article  Google Scholar 

  • Pianka E.R. (1986). Ecology and Natural History of Desert Lizards. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Pianka E.R. and Schall J.J. (1981). Species densities of Australian vertebrates. In: Keast, A. (eds) Ecological Biogeography of Australia, pp 1676–1694. Dr. W. Junk Publishers, The Hague, The Netherlands

    Google Scholar 

  • Pyrcz T.W. and Wojtusiak J. (2002). The vertical distribution of pronophiline butterflies (Nymphalidae, Satyrinae) along an elevational transect in Monte Zerpa (Cordillera de Mérida, Venezuela) with remarks on their diversity and parapatric distribution. Global Ecol. Biogeogr. 11: 211–221

    Article  Google Scholar 

  • Rahbek C. (1995). The elevational gradient of species richness: a uniform pattern?. Ecography 18: 200–205

    Article  Google Scholar 

  • Rahbek C. (1997). The relationship between area, elevation and regional species richness in Neotropical birds. Am. Nat. 149: 875–902

    Article  PubMed  CAS  Google Scholar 

  • Rickart E.A. (2001). Elevational diversity gradients, biogeography and the structure of montane mammal communities in the intermountain region of North America. Global Ecol. Biogeogr. 10: 77–100

    Article  Google Scholar 

  • Rohde K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514–527

    Article  Google Scholar 

  • Rosenzweig M.L. (1968). Net primary productivity of terrestrial environments: predictions from climatological data. Am. Nat. 102: 67–84

    Article  Google Scholar 

  • Rosenzweig M.L. (1992). Species diversity gradients: we know more and less than we thought. J. Mammal. 73: 715–730

    Article  Google Scholar 

  • Rosenzweig M.L. (1995). Species Diversity in Space and Time. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosenzweig M.L. and Abramsky Z. (1993). How are diversity and productivity related?. In: Ricklefs, R.E. and Schluter, D. (eds) Species Diversity in Ecological Communities: Historical and Geographical Perspectives, pp 52–65. University of Chicago Press, Chicago

    Google Scholar 

  • Samson D.A., Rickart E.A. and Gonzales P.C. (1997). Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29: 349–363

    Article  Google Scholar 

  • Sánchez-Cordero V. (2001). Elevational gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecol. Biogeogr. 10: 63–76

    Article  Google Scholar 

  • Sanders N.J. (2002). Elevational gradients in ant species richness: area, geometry and Rapoport’s rule. Ecography 25: 25–32

    Article  Google Scholar 

  • Sanders N.J., Moss J. and Wagner D. (2003). Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecol. Biogeogr. 12: 93–102

    Article  Google Scholar 

  • Schall J.J. and Pianka E.R. (1978). Geographical trends in numbers of species. Science 201: 679–686

    Article  PubMed  Google Scholar 

  • Scheibe J.S. (1987). Climate, competition and the structure of temperate zone lizard communities. Ecology 68: 1424–1436

    Article  Google Scholar 

  • Scott N.J. (1976). The abundance and diversity of the herpetofaunas of tropical forest litter. Biotropica 8: 41–58

    Article  Google Scholar 

  • Simbotwe M.P. (1985). Distribution patterns in a wetland herpetofaunal assemblage of the kafue flats. Zambia. Black lechwe 7: 12–16

    Google Scholar 

  • Tang C.Q. and Ohsawa M. (1999). altitudinal distribution of evergreen broad-leaved trees and their leaf-size pattern on a humid subtropical mountain, Mt. EmeiSichuan, China. Plant Ecol. 145: 221–233

    Article  Google Scholar 

  • Terent’ev P.W. (1963). Attempt at application of analysis of variation to the qualitative richness of the fauna of terrestrial vertebrates of the U.S. S. R. Vestnik Leningradskovo Universiteta 21: 19–26

    Google Scholar 

  • Vetaas O.R. and Grytnes J.A. (2002). Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol. Biogeogr. 11: 291–301

    Article  Google Scholar 

  • Humboldt A. (1808). Ansichten der Natur mit wissenschaftlichen erlauterungen. J. G. Cotta, Tübingen, Germany

    Google Scholar 

  • Whitford W.G. and Creusere F.M. (1977). Seasonal and yearly fluctuations in Chihuahuan desert lizard communities. Herpetologica 33: 54–65

    Google Scholar 

  • Whittaker R.J. and Field R. (2000). Tree species richness modeling: an approach of global applicability?. Oikos 89: 399–402

    Article  Google Scholar 

  • Whittaker R.J., Willis K.J. and Field R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28: 453–470

    Article  Google Scholar 

  • Willig M.R., Kaufman D.M. and Stevens R.D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. An. Rev. Ecol., Evol. Syst. 34: 273–309

    Article  Google Scholar 

  • Willis K.J. and Whittaker R.J. (2002). Species diversity: scale matters. Science 295: 1245–1248

    Article  PubMed  CAS  Google Scholar 

  • Wright D.H. (1983). Species-energy theory: an extension of species-area theory. Oikos 41: 496–506

    Article  Google Scholar 

  • Yang Z., Xie Y. and Yang S. (1994). The application of evaporation ratio (E / E0) to the regionalization and classification of arid and humid climate of Yunnan Province. J. Yunnan Univ. (supplement) 16: 91–98

    Google Scholar 

  • Zhang R., Zhen D., Yang Q. and Liu Y. (1997). Physical Geography of Hengduan Mountains. Science Press, Beijing, China

    Google Scholar 

  • Zhang Y. (1989). Climatic division of the Hengduan mountains region. Mount. Res. 7: 21–28

    Google Scholar 

  • Zhao E., Chang H., Zhao H. and Adler K. (2000). Revised checklist of Chinese Amphibia & Reptilia. Sichuan J. Zool. 19: 196–207

    Google Scholar 

  • Zhao E. and Huang Q. (2003). Coloured Atlas of Sichuan reptiles. China Forestry Publishing House, Beijing, China

    Google Scholar 

  • Zhao E. and Yang D. (1997). Herpetological Fauna of the Hengduan Mountains. Science Press, Beijing, China

    Google Scholar 

  • Zhen D. (1989). A comparative study on physical-geographic conditions between the Himalayas and Hengduan Mountainous Regions. Mount. Res. 6: 137–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuizhang Fu or Jihua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C., Wang, J., Pu, Z. et al. Elevational gradients of diversity for lizards and snakes in the Hengduan Mountains, China. Biodivers Conserv 16, 707–726 (2007). https://doi.org/10.1007/s10531-005-4382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-005-4382-4

Keywords

Navigation