Skip to main content

Advertisement

Log in

Assessing changes to ecosystem structure and function following invasion by Spartina alterniflora and Phragmites australis: a meta-analysis

  • Review
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Biological invasions resulting from anthropogenic activities are one of the greatest threats to maintaining ecosystem functioning and native biodiversity. Invasions are especially problematic when the invading species behaves as an ecosystem engineer that is capable of transforming ecosystem structure, function, and community dynamics. Of particular concern is the spread of emergent wetland grasses whose root systems alter hydrology and structural stability of soils, modify ecosystem functions, and change community dynamics and species richness. To address the threats posed to ecosystems across the globe, management practices focus on the control and removal of invasive grasses. However, it remains unclear how severely invasive grasses alter ecosystem functions and whether alterations persist after invasive grass removal, limiting our ability to determine if management practices are truly sufficient to fully restore ecosystems. Here, we conducted a meta-analysis to quantify ecological alterations and the efficacy of management following the invasion of Spartina alterniflora and Phragmites australis, two common and pervasive invaders in coastal wetlands. Our results indicate that S. alterniflora and P. australis significantly alter measures of ecosystem functioning and organismal abundance. Invaded ecosystems had significant elevations in abiotic carbon and nitrogen fixation and uptake in areas with invasive grasses, with differential photosynthetic pathways of these two grass species further explaining carbon fluxes. Moreover, evidence from our analyses indicates that management practices may not adequately promote recovery from invasion, but more data are needed to fully assess management efficacy. We call for future studies to conduct pairwise comparisons between uninvaded, invaded, and managed systems and provide research priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data

All data are available via Northern Illinois University’s Huskie Commons: https://commons.lib.niu.edu/handle/10843/23001.

Code availability

R code is available via Northern Illinois University’s Huskie Commons: https://commons.lib.niu.edu/handle/10843/23001.

References

  • Able KW, Hagan SM, Brown SA (2003) Mechanisms of marsh habitat alteration due to Phragmites: response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment for Phragmites removal. Estuaries 26:484–494

    Article  Google Scholar 

  • Ailstock MS, Norman CM, Bushmann PJ (2001) Common reed Phragmites australis: control and effects upon biodiversity in freshwater nontidal wetlands. Restor Ecol 9:49–59

    Article  Google Scholar 

  • Angradi TR, Hagan SM, Able KW (2001) Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: Phragmites vs. Spartina. Wetlands 21:75–92

    Article  Google Scholar 

  • Ayres DR, Garcia-Rossi D, Davis HG, Strong DR (1999) Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA (RAPDs). Mol Ecol 8:1179–1186

    Article  Google Scholar 

  • Batary P, Baldi A, Kleijn D, Tscharntke T (2011) Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B 278:1894–1902

    Article  PubMed  Google Scholar 

  • Bedano JC, Sacchi L, Natale E, Reinoso H (2014) Saltcedar (Tamarix ramosissima) invasion alters decomposer fauna and plant litter decomposition in a temperate xerophytic deciduous forest. Adv Ecol 2014:519297

    Google Scholar 

  • Benoit LK, Askin RA (1999) Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19:194–208

    Article  Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688

    Article  Google Scholar 

  • Brusati ED, Grosholz ED (2006) Native and introduced ecosystem engineers produce contrasting effects on estuarine infaunal communities. Biol Invasions 8:683–695

    Article  Google Scholar 

  • Burke DJ, Weis JS, Weis P (2000) Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast Shelf Sci 51:153–159

    Article  CAS  Google Scholar 

  • Centre for Agricultural and Biosciences International (CABI) (2008a) Spartina alterniflora (smooth cordgrass) [original text by Roberts P]. In: Invasive Species Compendium. CAB International, Wallingford, UK https://www.cabi.org/isc/datasheet/107740

  • CABI (2008b) Phragmites australis (common reed) [original text by Parker C]. In: Invasive Species Compendium. CAB International, Wallingford, UK https://www.cabi.org/isc/datasheet/40514

  • Canty A, Ripley BD (2019) boot: Bootstrap R (S-Plus) functions. R package version 1.3–24

  • Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc Natl Acad Sci 106:1305–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabreck RH (1972) Vegetation, water, and soil characteristics of the Louisiana coastal region. Louisiana State University Agricultural Experiment Station. Bulletin No. 664. Baton Rouge, LA

  • Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427–430

    Article  CAS  PubMed  Google Scholar 

  • Chase JM, McGill BJ, Thompson PL, Antão LH, Bates AE, Blowes SA, Dornelas M, Gonzalez A, Magurran AE, Supp SR, Winter M, Bjorkman AD, Bruelheide H, Byrnes JEK, Cabral JS, Elahi R, Gomez C, Guzman HM, Isbell F, Myers-Smith IH, Jones HP, Hines J, Vellend M, Waldock C, O’Connor M (2019) Species richness change across spatial scales. Oikos 128:1079–1091

    Article  Google Scholar 

  • Chen H, Li B, Hu J, Chen J, Wu J (2007) Effects of Spartina alterniflora invasion on benthic nematode communities in the Yangtze Estuary. Mar Ecol Prog Ser 336:99–110

    Article  Google Scholar 

  • Cheng X, Peng R, Chen J, Luo Y, Zhang Q, An S, Chen J, Li B (2007) CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere 68:420–427

    Article  CAS  PubMed  Google Scholar 

  • Crocker EB, Nelson EB, Blossey B (2017) Soil conditioning effects of Phragmites australis on native wetland plant seedling survival. Ecol Evol 71:5571–5579

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and invasive alien plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • Diciccio TJ, Romano JP (1988) A review of bootstrap confidence intervals. J R Stat Soc B 50:338–354

    Google Scholar 

  • Duke ST, Francoeur SN, Judd KE (2015) Effects of Phragmites australis invasion on carbon dynamics in a freshwater marsh. Wetlands 35:311–321

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Eviner VT, Garbach K, Baty JH, Hoskinson SA (2012) Measuring the effects of invasive plants on ecosystem services: challenges and prospects. Invas Plant Sci Mana 5:125–136

    Article  Google Scholar 

  • Fell PE, Weissbauch SP, Jones SP, Fallon DA, Zeppieri JA, Fason JA, Lennon EJ, Newburry KA, Reddington LK (1998) Does invasion of oligohaline tidal marshes by reed grass, Phragmites australis, affect the availability of prey resources for the mummichog, Fundulus heteroclitus L.? J Exp Mar Biol Ecol 222:59–79

    Article  Google Scholar 

  • Findlay SEG, Dye S, Kuehn KA (2002) Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands 22:616–625

    Article  Google Scholar 

  • Frankenberg J (1997) Guidelines for growing Phragmites for erosion control. Cooperative Research Centre for Freshwater Ecology Murray-Darling Freshwater Research Centre, Albury, NSW, Australia

    Google Scholar 

  • Gan X, Cai Y, Choi C, Ma Z, Chen J, Li B (2009) Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuar Coast Shelf Sci 83:211–218

    Article  Google Scholar 

  • Gucker CL (2008) Phragmites australis. In: Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory https://www.fs.fed.us/database/feis/plants/graminoid/phraus/all.html

  • Guntenspergen GR, Nordby JC (2006) The impact of invasive plants on tidal-marsh vertebrate species: common reed (Phragmites australis) and smooth cordgrass (Spartina alterniflora) as case studies. Stud Avian Biol 32:229

    Google Scholar 

  • Hazelton, ELG, Mozdzer, TJ, Burdick, DM, Kettenring, KM, Whigham DF (2014) Phragmites australis management in the United States: 40 years of methods and outcomes. AoB Plants 6:plu001

  • Hedges L (1981) Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat 6:107–128

    Article  Google Scholar 

  • Hong Y, Liao D, Hu A, Wang H, Chen J, Khan S, Su J, Li H (2015) Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Can J Microbiol 61:723–733

    Article  CAS  PubMed  Google Scholar 

  • Hughes AR, Schenck FR, Bloomberg J, Hanley TC, Feng D, Gouhier TC, Beighley RD, Kimbro DL (2016) Biogeographic gradients in ecosystem processes of the invasive ecosystem engineer Phragmites australis. Biol Invasions 18:2577–2595

    Article  Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Article  Google Scholar 

  • Invasive Species Specialist Group (ISSG) (2015) The Global Invasive Species Database. Version: 2015.1. http://www.iucngisd.org/gisd/

  • ISSG (2020) Species profile: Spartina alterniflora. In: The Global Invasive Species Database. IUCN, Gland, Switzerland http://www.iucngisd.org/gisd/speciesname/Spartina+alterniflora

  • Jones HP, Jones PC, Barbier EB, Blackburn RC, Benayas JMR, Holl KD, McCrackin M, Meli P, Montoya D, Mateos DM (2018) Restoration and repair of Earth’s damaged ecosystems. Proc R Soc B 285:20172577

    Article  PubMed  PubMed Central  Google Scholar 

  • Kay SH, Hoyle ST (2001) Mail order, the Internet, and invasive aquatic weeds. J Aquat Plant Manage 39:88–91

    Google Scholar 

  • Kellogg EA (2013) C4 photosynthesis. Curr Biol 23:PR594–R599

  • Kerr DW, Hogle IB, Ort BS, Thornton WJ (2016) A review of 15 years of Spartina management in the San Francisco Estuary. Biol Invasions 18:2247–2266

    Article  Google Scholar 

  • Kettenring KM, Adams CR (2011) Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J Appl Ecol 48:970–979

    Article  Google Scholar 

  • Kiviat E (2013) Ecosystem services of Phragmites in North America with emphasis on habitat functions. AoB Plants 5:plt008

  • Kiviat E (2019) Organisms using Phragmites australis are diverse and similar on three continents. J Nat Hist 53(31–32):1975–2010

    Article  Google Scholar 

  • Landin MC (1991) Growth habits and other considerations of smooth cordgrass, Spartina alterniflora Loisel. In: Spartina Workshop Record. Washington Sea Grant Program, University of Washington, Seattle WA

  • Leonard LA, Wren PA, Beavers RL (2002) Flow dynamics and sedimentation in Spartina alterniflora and Phragmites australis marshes of the Chesapeake Bay. Wetlands 22:415–424

    Article  Google Scholar 

  • Li Y-P, Feng Y-L, Kang Z-L, Zheng Y-L, Zhang J-L, Chen Y-J (2017) Changes in soil microbial communities due to biological invasions can reduce allelopathic effects. J Appl Ecol 54:1281–1290

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion Ecology. Blackwell, Malden, MA

    Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Magrach A, Laurance WF, Larrinaga AR, Santamaria L (2014) Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conserv Biol 28:1342–1348

    Article  PubMed  Google Scholar 

  • Marks M, Lapin B, Randall J (1993) Element stewardship abstract for Phragmites australis common reed. The Nature Conservancy, Arlington, VA

    Google Scholar 

  • Martin RM, Moseman-Valtierra S (2015) Greenhouse gas fluxes vary between Phragmites australis and native vegetation zones in coastal wetlands along a salinity gradient. Wetlands 35:1021–1031

    Article  Google Scholar 

  • Martin RM, Moseman-Valtierra S (2017) Effects of transient Phragmites australis removal on brackish marsh greenhouse gas fluxes. Atmos Environ 158:51–59

    Article  CAS  Google Scholar 

  • Martin LJ, Blossey B, Ellis E (2012) Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Front Ecol Environ 10:195–201

    Article  Google Scholar 

  • Meyerson LA, Chambers RM, Vogt KA (1999) The effects of Phragmites removal on nutrient pools in a freshwater tidal marsh ecosystem. Biol Invasions 1:129–136

    Article  Google Scholar 

  • Meyerson LA, Saltonstall K, Windham L, Kiviat E, Findlay S (2000) A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecol Manag 8:89–103

    Article  CAS  Google Scholar 

  • Meyerson LA, Viola DV, Brown RN (2010) Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol Invasions 12:103–111

    Article  Google Scholar 

  • Minchinton TE, Bertness MD (2003) Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. Ecol Appl 13(5):1400–1416

    Article  Google Scholar 

  • Mozdzer TJ, Langley JA, Mueller P, Megonigal JP (2016) Deep rooting and global change facilitate spread of invasive grass. Biol Invasions 18:2619–2631

    Article  Google Scholar 

  • Partridge TR (1987) Spartina in New Zealand. NZ J Bot 25:567–575

    Article  Google Scholar 

  • Pearson DE, Ortega YK, Runyon JB, Butler JL (2016) Secondary invasion: the bane of weed management. Biol Conserv 197:8–17

    Article  Google Scholar 

  • Peruzzi E, Macci C, Doni S, Masciandaro G, Peruzzi P, Aiello M, Ceccanti B (2009) Phragmites australis for sewage sludge stabilization. Desalination 246:110–119

    Article  CAS  Google Scholar 

  • Phipson B, Smyth GK (2010) Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn. Stat Appl Gen Mol 9:1–12

    Google Scholar 

  • Powell KI, Chase JM, Knight TM (2011) A synthesis of plant invasion effects on biodiversity across spatial scales. Am J Bot 98:539–548

    Article  PubMed  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

  • Raichel DL, Able KW, Hartman JM (2003) The influence of Phragmites (common reed) on the distribution, abundance, and potential prey of a resident marsh fish in the Hackensack Meadowlands, New Jersey. Estuaries 26:511–521

    Article  Google Scholar 

  • Rooth JE, Stevenson JC (2000) Sediment deposition patterns in Phragmites australis communities: implications for coastal areas threatened by rising sea-level. Wetlands Ecol Manag 8:173–183

    Article  Google Scholar 

  • Rooth JE, Stevenson JC, Cornwell JC (2003) Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26:475–483

    Article  Google Scholar 

  • Rudrappa T, Choi YS, Levia DF, Legates DR, Lee KH, Bais HP (2009) Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity. Plant Signal Behav 4(6):506–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci 99:2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltonstall K, Meyerson LA (2016) Phragmites australis: from genes to ecosystems. Biol Invasions 18:2415–2420

    Article  Google Scholar 

  • Seliskar DM, Gallagher JL, Burdick DM, Mutz LA (2002) The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study. J Ecol 90:1–11

    Article  Google Scholar 

  • Silliman BR, Bertness MD (2004) Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv Biol 18:1424–1434

    Article  Google Scholar 

  • Simenstad CA, Thom RM (1995) Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific Northwest estuaries. Hortus Northwest 6:9–40

    Google Scholar 

  • Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53

    Article  PubMed  Google Scholar 

  • Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol S 42:465–487

  • Talley TS, Levin LA (2001) Modification of sediments and macrofauna by an invasive marsh plant. Biol Invasions 3:51–68

    Article  Google Scholar 

  • Theuerkauf SJ, Puckett BJ, Theuerkauf KW, Theuerkauf EJ, Eggleston DB (2017) Density-dependent role of an invasive marsh grass, Phragmites australis, on ecosystem service provision. PLoS ONE 12(2):e0173007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uddin MN, Robinson RW (2017) Responses of plant species diversity and soil physical-chemical-microbial properties to Phragmites australis invasion along a density gradient. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  • USDA National Resources Conservation Service (NRCS) (1999) Streambank and shoreline protection. USDA NRCS conservation practice standard 580, Temple TX

  • USDA NRCS (2019) The PLANTS database. USDA NRCS National Plant Data Team, Greensboro NC http://plants.usda.gov

  • Walker MJ, Grimes C (1997) Ditch stabilization with shoreline common reed. National Meeting of the American Society for Surface Mining and Reclamation, Austin TX

    Google Scholar 

  • Walkup CJ (1991) Spartina alterniflora. In: Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. https://www.fs.fed.us/database/feis/plants/graminoid/spaalt/all.html

  • Warren RS, Fell PE, Grimsby JL, Buck EL, Rilling GC, Fertik RA (2001) Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 24:90–107

    Article  Google Scholar 

  • Watson L, Macfarlane TD, Dallwitz MJ (1992) The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. Version: 15 February 2019 https://www.delta-intkey.com/

  • Weidenhamer JD, Li M, Allman J, Bergosh RG, Posner M (2013) Evidence does not support a role for gallic acid in Phragmites australis invasion success. J Chem Ecol 39:323–332

    Article  CAS  PubMed  Google Scholar 

  • Williams J, Lambert AM, Long R, Saltonstall K (2019) Does hybrid Phragmites australis differ from native and introduced lineages in reproductive, genetic, and morphological traits? Botany 106:1–13

    Google Scholar 

  • Yang W, An S, Zhao H, Xu L, Qiao Y, Cheng X (2016) Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pool sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecol Engineering 86:174–182

    Article  Google Scholar 

  • Yelenik SG, D’Antonio CM (2013) Self-reinforcing impacts of plant invasions change over time. Nature 503:517–520

    Article  CAS  PubMed  Google Scholar 

  • Zeleke J, Sheng Q, Wang J-G, Huang M-Y, Xia F, Wu J-H, Quan Z-X (2013) Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front Microbiol 4:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng A, Hu W, Zeng C, Sun Z, Gao D (2020) Litter decomposition and nutrient dynamics of native species (Cyperus malaccensis) and alien invasive species (Spartina alterniflora) in a typical subtropical estuary (Min River) in China. Estuar Coast 43:1873–1883

    Article  CAS  Google Scholar 

  • Zhang D, Hu Y, Liu M, Chang Y, Yan X, Bu R, Zhao D, Li Z (2017) Introduction and spread of an exotic plant, Spartina alterniflora, along coastal marshes of China. Wetlands 37:1181–1193

    Article  Google Scholar 

  • Zhang P, Li B, Wu J, Hu S (2018a) Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol Lett 22(1):200–210

    Article  PubMed  Google Scholar 

  • Zhang P, Neher DA, Li B, Wu J (2018b) The impacts of above- and belowground plant input on soil microbiota: invasive Spartina alterniflora versus native Phragmites australis. Ecosystems 21:469–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Doll, N. Steijn, M. Tee, and M. Weston for their assistance in reviewing articles. We thank P. Guiden and E. Rowland for their feedback on earlier drafts of this work.

Funding

The authors have no funding to declare for this project.

Author information

Authors and Affiliations

Authors

Contributions

Conceived of project: HPJ, CNW; Collected, screened, entered and proofed data: KB, RB, AD, JH, HH, WAH, HPJ, LR, KS, JPV, CNW; Analysis: CNW, HH, WAH, HPJ, RB, LR, KS, JPV; Manuscript writing: CNW, WAH, MPN, HPJ, KS, HH, KB, AD; Supervised project: CNW, HPJ, HH.

Corresponding author

Correspondence to Christy N. Wails.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest (perceived or otherwise) to declare for this project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wails, C.N., Baker, K., Blackburn, R. et al. Assessing changes to ecosystem structure and function following invasion by Spartina alterniflora and Phragmites australis: a meta-analysis. Biol Invasions 23, 2695–2709 (2021). https://doi.org/10.1007/s10530-021-02540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-021-02540-5

Keywords

Navigation