Skip to main content

Advertisement

Log in

Trojan hosts: the menace of invasive vertebrates as vectors of pathogens in the Southern Cone of South America

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive alien species (IAS) can act as vectors for the introduction of pathogens in ecosystems and their transmission to threatened native species (TNS), leading to biodiversity loss, population reductions and extinctions. We assessed pathogens potentially occurring in a set of IAS in the Southern Cone of South America and identified TNS potentially vulnerable to their effects. Also, we assessed how risk analysis systems proposed or adopted by national authorities in the study region value the importance of pathogens. We identified 324 pathogens in the selected IAS, which could potentially affect 202 TNS. Wild boar (Sus scrofa) was the IAS with the largest number of pathogens (91), followed by domestic dog (Canis familiaris) (62), red deer (Cervus elaphus) (58), rock dove (Columba livia) (37), American vison (Neovison vison) (18), European hare (Lepus europaeus) (17), common starling (Sturnus vulgaris) (12), common slider (Trachemys scripta) (6), and American bullfrog (Lithobates catesbeianus) (2). Most TNS were in the “vulnerable” IUCN category, followed by “endangered” and “critically endangered” species. Bacteria were the most frequently represented pathogens (112), followed by ectoparasites (78), viruses (69), protozoa and other (65). The direct effects of IAS on native wildlife are beginning to be addressed in South America, and their potential impact as pathogen spreaders to native wildlife has remained largely unexplored. Risk analysis systems associated with the introduction of IAS are scarce in this region. Although the existing systems contemplate hazard analyses for the co-introduction of pathogens, they underestimate the potential impact of diseases on TNS. Conservation efforts in the region would benefit from systems which give pathogen risk a relevant place, and from government agencies promoting targeted disease surveillance in IAS and wildlife.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Acosta-Jamett G, Chalmers WS, Cunningham AA et al (2011) Urban domestic dog populations as a source of canine distemper virus for wild carnivores in the Coquimbo region of Chile. Vet Microbiol 152:247–257

    Article  CAS  PubMed  Google Scholar 

  • Agostini MG, Cortelezzi A, Berkunsky I et al (2015) First record of Batrachochytrium dendrobatidis infecting threatened populations of Tandilean Red-belly toad (Melanophryniscus aff. montevidensis) in Argentina. Rev Mex Biodivers 86:826–828

    Article  Google Scholar 

  • Akmentins MS, Cardozo DE (2010) American bullfrog Lithobates catesbeianus (Shaw, 1802) invasion in Argentina. Biol Invasions 12:735–737

    Article  Google Scholar 

  • Antonovics J, Hood M, Partain J (2002) The ecology and genetics of a host shift: Microbotryum as a model system. Am Nat 160:S40–S53

    Article  PubMed  Google Scholar 

  • Arellano ML, Ferraro DP, Steciow MM et al (2009) Infection by the chytrid fungus Batrachochytrium dendrobatidis in the yellow belly frog (Elachistocleis bicolor) from Argentina. Herpetol J 19:217–220

    Google Scholar 

  • Bacigalupe LD, Soto-Azat C, García-Vera C et al (2017) Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus. Glob Change Biol 23:3543–3553

    Article  Google Scholar 

  • Baptiste MP, Castaño N, Cárdenas D et al (2010) Análisis de riesgo y propuesta de categorización de especies introducidas para Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, p 200

    Google Scholar 

  • Barrionuevo JS, Aguayo R, Lavilla EO (2005) First record of chytridiomycosis in Bolivia (Rhinella quechua; Anura: Bufonidae). Dis Aquat Org 82:161–163

    Article  Google Scholar 

  • Barrios-Garcia MN, Ballari SA (2012) Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions 14:2283–2300

    Article  Google Scholar 

  • Barvea N, Barvea V, Jiménez-Valverde A (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  • Biedrzycka A, Popiołek M, Zalewski A (2020) Host-parasite interactions in non-native invasive species are dependent on the levels of standing genetic variation at the immune locus. BMC Evol Biol 20:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BirdLife International and NatureServe (2015) Bird species distribution maps of the world. BirdLife International, Cambridge

    Google Scholar 

  • Bivand R, Rundel C (2017) rgeos: interface to Geometry Engine-Open Source (GEOS). R package version 0.3-23. https://CRAN.R-project.org/package=rgeos

  • Bivand R, Keitt T, Rowlingson B (2017) rgdal: bindings for the Geospatial Data Abstraction Library. R package version 1.2-7. https://CRAN.R-project.org/package=rgdal

  • Boitani L, Francisci F, Ciucci P, Andreoli G (2017) The ecology and behavior of feral dogs: a case study from central Italy. In: Serpell J (ed) The domestic dog: its evolution, behavior and interactions with people. Cambridge University Press, Cambridge, pp 342–368

    Google Scholar 

  • Borteiro C, Cruz J, Kolenc F et al (2009) Chytridiomycosis in frogs from Uruguay. Dis Aquat Organ 84:159–162

    Article  PubMed  Google Scholar 

  • Bradley T, King RS (2012) The dog economy is global—but what is the world’s true canine capital? The Atlantic. https://www.theatlantic.com/business/archive/2012/11/the-dog-economy-is-global-but-what-is-the-worlds-true-canine-capital/265155/. Accessed 13 Nov 2018

  • Brzeski KE, Harrison RB, Waddell WT et al (2015) Infectious disease and red wolf conservation: assessment of disease occurrence and associated risks. J Mammal 96:751–761

    Article  PubMed  Google Scholar 

  • Burrowes PA, De la Riva I (2017) Detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis in museum specimens of Andean aquatic birds: implications for pathogen dispersal. J Wild Dis 53(2):349–355

    Article  Google Scholar 

  • Byrnea AQ, Vredenburg VT, Martel A et al (2019) Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. PNAS 116:20382–20387

    Article  Google Scholar 

  • Capinha C, Larson ER, Tricarico E et al (2013) Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Conserv Biol 27:731–740

    Article  PubMed  Google Scholar 

  • Carpinetti B, Castresana G, Rojas P et al (2014) Vigilancia epidemiológica en poblaciones de cerdos silvestres (Sus scrofa). Implicancias para la salud pública, la producción animal y la conservación de la biodiversidad. Revista SNS 5–6:67–76

    Google Scholar 

  • Carpinetti B, Castresana G, Rojas P et al (2016) Determinación de anticuerpos contra patógenos virales y bacterianos seleccionados en la población de cerdos silvestres (Sus scrofa) de la Reserva Natural Bahía Samborombón, Argentina. Analecta Vet 37:1–11

    Google Scholar 

  • Carvalho TC, Becker G, Toledo LF (2017) Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc R Soc B 284:20162254

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H (2018) VennDiagram: generate high-resolution Venn and Euler plots. R package version 1.6.18. https://CRAN.R-project.org/package=VennDiagra

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc B 356:991–999

    Article  CAS  Google Scholar 

  • Collins LM, Warnock ND, Tosh DG et al (2014) Squirrelpox virus: assessing prevalence, transmission and environmental degradation. PLoS ONE 9:e89521

    Article  PubMed  PubMed Central  Google Scholar 

  • Comité Operativo para el Control de las Especies Exóticas Invasoras (2014) Estrategia Nacional integrada para la prevención, el control y/o erradicación de las especies exóticas invasoras. Ministerio del Medio Ambiente, Santiago, p 26

    Google Scholar 

  • Cooney R (2004). The precautionary principle in biodiversity conservation and natural resource management: an issues paper for policy-makers, researchers and practitioners. IUCN, Gland, Switzerland and Cambridge, UK, xi + 51pp

  • Cooper ME, Rosser AM (2002) International regulation of wildlife trade: relevant legislation and organisations. Rev Sci Tech 21:103–123

    Article  CAS  PubMed  Google Scholar 

  • Craft ME (2015) Infectious disease transmission and contact networks in wildlife and livestock. Philos Trans R Soc Lond B Biol Sci 370(1669):20140107

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • D’hondt B, Vanderhoeven S, Roelandt S, et al (2015) Harmonia+ and Pandora+: risk screening tools for potentially invasive plants, animals and their pathogens. Biol Invasions 17:1869–1883

    Article  Google Scholar 

  • Daszak P, Berger L, Cunningham AA et al (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • Davies TJ, Pedersen AB (2008) Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc R Soc B 275:1695–1701

    Article  PubMed  PubMed Central  Google Scholar 

  • Delpietro HA, Gury-Dhomen F, Larghi OP et al (1997) Monoclonal antibody characterization of rabies virus strains isolated in the River Plate Basin. J VeT Med B 44:477–483

    Article  CAS  Google Scholar 

  • Delpietro HA, Lord RD, Russo RG et al (2009) Observations of sylvatic rabies in northern Argentina during outbreaks of paralytic cattle rabies transmitted by vampire bats (Desmodus rotundus). J Wildl Dis 45:1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Doherty TS, Dickman CR, Glen AS et al (2017) The global impacts of domestic dogs on threatened vertebrates. Biol Conserv 210:56–59

    Article  Google Scholar 

  • Duffus ALJ, Waltzek TB, Stöhr AC et al (2015) Distribution and host range of ranaviruses. In: Gray MJ, Chinchar VG (eds) Ranaviruses: lethal pathogens of ectothermic vertebrates. Springer, New York

    Google Scholar 

  • Ferreyra H, Calderón MG, Marticorena D et al (2009) Canine distemper infection in Crab-Eating Fox (Cerdocyon Thous) from Argentina. J Wildl Dis 45:1158–1162

    Article  PubMed  Google Scholar 

  • Fèvre EM, de C. Bronsvoort BM, Hamilton KA et al (2006) Animal movements and the spread of infectious diseases. Trends Microbiol 14:125–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox SF, Greer AL, Torres-Cervantes R et al (2006) First case of ranavirus-associated morbidity and mortality in natural populations of the South American frog Atelognathus patagonicus. Dis Aquat Org 72:87–92

    Article  Google Scholar 

  • Galetti M, Pedrosa F, Keuroghlian A, Sazima I (2016) Liquid lunch—vampire bats feed on invasive feral pigs and other ungulates. Front Ecol Environ 14:505–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Galli L, Pereira A, Márquez A, Mazzoni R (2006) Ranavirus detection by PCR in cultured tadpoles (Rana catesbeiana Shaw, 1802) from South America. Aquaculture 257(1–4):78–82

    Article  CAS  Google Scholar 

  • Ghirardi R, Lescano JN, Longo MS et al (2009) Batrachochytrium dendrobatidis in Argentina: first record in Leptodatylus gracilis and another record in Leptodactylus ocellatus. Herpetol Rev 40:175–176

    Google Scholar 

  • Ghirardi R, Lopez JA, Scarabotti PA et al (2011) First record of the chytrid fungus in Lithobates catesbeianus from Argentina: exotic species and conservation. Rev Mex Biodivers 82:1337–1339

    Google Scholar 

  • Ghirardi R, Levy MG, López JA et al (2014) Endangered amphibians infected with the chytrid fungus Batrachochytrium dendrobatdis in austral temperate wetlands from Argentina. Herpetol J 24:129–133

    Google Scholar 

  • Gilbert M, Miquelle DG, Goodrich JM et al (2014) Estimating the potential impact of canine distemper virus on the Amur tiger population (Panthera tigris altaica) in Russia. PLoS ONE 9:e110811

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovanelli JGR, Haddad CFB, Alexandrino J (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions 10:585–590

    Article  Google Scholar 

  • Gompper ME (2014) The dog-human-wildlife interface: assessing the scope of the problem. In: Gompper ME (ed) Free-ranging dogs and wildlife conservation, 1st edn. Oxford, pp 9–54

  • Griffa N, Abate S, Winter M et al (2018) Zoonosis en animales exóticos: tuberculosis en jabalíes (Sus scrofa) del noreste de la Patagonia Argentina, uso de pruebas serológicas para su detección. II Congreso Internacional de Zoonosis IX Congreso Argentino de Zoonosis

  • Guisan A, Petitpierre B, Broennimann O et al (2014) Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol 29:260–269

    Article  PubMed  Google Scholar 

  • Hanselmann R, Rodríguez A, Lampo M et al (2004) Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biol Conserv 120:115–119

    Article  Google Scholar 

  • Heard MJ, Smith KF, Ripp KJ et al (2013) The threat of disease increases as species move toward extinction. Conserv Biol 27:1378–1388

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera RA, Steciow MM, Natale GS (2005) Chytrid fungus parasitizing the wild amphibian Leptodactylus ocellatus (Anura: Leptodactylidae) in Argentina. Dis Aquat Org 64:247–252

    Article  Google Scholar 

  • Hijmans RJ (2018) raster: geographic data analysis and modeling. R package version 2.8-4. https://CRAN.R-project.org/package=raster

  • Hughes J, Macdonald DW (2013) A review of the interactions between free-roaming domestic dogs and wildlife. Biol Conserv 157:341–351

    Article  Google Scholar 

  • Horus Institute for Environmental Conservation and Development. I3N Brazil Invasive Alien Species Database. http://i3n.institutohorus.org.br/www/?sys_language=en. Accessed 13 Nov 2018

  • Invasive Species Specialist Group (ISSG) (2015) The Global Invasive Species Database Version 2015.1. http://www.iucngisd.org/gisd. Accessed 13 Nov 2018

  • IUCN (2017) The IUCN Red List of threatened species. Version 2017-1. http://www.iucnredlist.org. Accessed 12 May 2017

  • IUCN Standards and Petitions Committee (2019) Guidelines for using the IUCN red list categories and criteria. Version 14. Prepared by the Standards and Petitions Committee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf. Accessed 9 Jan 2021

  • Jeschke JM, Bacher S, Blackburn TM et al (2014) Defining the impact of non-native species. Conserv Biol 28:1188–1194

    Article  PubMed  PubMed Central  Google Scholar 

  • Kat PW, Alexander KA, Smith JS (1996) Rabies among African wild dogs (Lycaon pictus) in the Masai Mara, Kenya. J Vet Diagn Invest 8:420–426

    Article  CAS  PubMed  Google Scholar 

  • La Sala LF, Marfil J, Martínez Vivot M et al (2017) Presencia de micobacterias patógenas y no patógenas en jabalíes y cerdos domésticos de Bahía Blanca, Argentina. XXX Jornadas Argentinas de Mastozoología, Bahía Blanca. Book of Abstracts, p 159

  • Lankester MW (2010) Understanding the impact of meningeal worm, Parelaphostrongylus tenuis, on moose populations. Alces 46:53–70

    Google Scholar 

  • Lescano JN, Longo S, Robledo G (2013) Chytridiomycosis in endemic amphibians of the mountain tops of the Córdoba and San Luis ranges, Argentina. Dis Aquat Organ 102:249–254

    Article  PubMed  Google Scholar 

  • Lever C (2003) Naturalized amphibians and reptiles of the world. Oxford University Press, New York

    Google Scholar 

  • Luchini L (1995) Situación de la ranicultura en la República Argentina. Technofrog 95:3–14

    Google Scholar 

  • Maciel ALG, Loiko MR, Bueno TS et al (2017) Tuberculosis in Southern Brazilian wild boars (Sus scrofa): first epidemiological findings. Transbound Emerg Dis 65:518–526

    Article  PubMed  Google Scholar 

  • Marino J, Sillero-Zubiri C, Deressa A et al (2017) Rabies and distemper outbreaks in smallest Ethiopian wolf population. Emerg Infect Dis 23:2102–2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Martino PE, Montenegro JL, Preziosi JA et al (2004) Serological survey of selected pathogens of free-ranging foxes in southern Argentina, 1998–2001. Rev Sci Tech 23:801–806

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni R, de Mesquita AJ, Fleury LFF et al (2009) Mass mortality associated with a frog virus 3-like Ranavirus infection in farmed tadpoles Rana catesbeiana from Brazil. Dis Aquat Organ 86:181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mc Cormick T, Martínez Vivot M, Falzoni E et al (2018) Tuberculosis en ciervos axis de la Mesopotamia Argentina. VIII Jornadas de Jóvenes Investigadores. Book of abstracts, pp 103–104

  • McCallum H (2012) Disease and the dynamics of extinction. Philos Trans R Soc B 367:2828–2839

    Article  Google Scholar 

  • Meagher M, Meyer ME (1994) On the origin of brucellosis in bison of Yellowstone National Park: a review. Conserv Biol 8:645–653

    Article  Google Scholar 

  • Megid J, Teixeira CR, Cortez A et al (2013) Canine distemper virus infection in a lesser grison (Galictis cuja): first report and virus phylogeny. Pesq Vet Bras 33:247–250

    Article  Google Scholar 

  • Miller RS, Sweeney SJ, Slootmaker C et al (2017) Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America. Sci Rep 7:7821

    Article  PubMed  PubMed Central  Google Scholar 

  • Nava AF, Cullen L Jr, Sana DA et al (2008) First evidence of canine distemper in Brazilian free-ranging felids. EcoHealth 5:513–518

    Article  PubMed  Google Scholar 

  • Navas JR (1987) Los vertebrados exóticos introducidos en la Argentina. Rev Mus Argent Cienc Nat Bernardino Rivadavia Zool 14:7–38

    Google Scholar 

  • O’Hanlon SJ et al (2018) Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360(6389):621–627

    Article  PubMed  PubMed Central  Google Scholar 

  • OIE (World Organisation for Animal Health) (2015) Fact sheets: wildlife diseases. https://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/Fact_sheets/WD_EN.pdf

  • OIE (World Organisation for Animal Health) (2019a) Terrestrial animal health code. https://www.oie.int/en/standard-setting/terrestrial-code/access-online

  • OIE (World Organisation for Animal Health) (2019b) Aquatic animal health code. https://www.oie.int/en/standard-setting/aquatic-code/access-online/

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Pérez Aguirreburualde MS, La Sala LF, Pecora A et al (2017) Evidencia serológica de infección por pestivirus en jabalíes de Bahía Blanca, Argentina: implicancias epidemiológicas en la interfaz entre fauna silvestre y ganado. XXX Jornadas Argentinas de Mastozoología, Bahía Blanca. Book of Abstracts, p 161

  • Perlman SJ, Jaenike J (2003) Evolution of multiple components of virulence in Drosophila-nematode associations. Evolution 57:1543–1551

    PubMed  Google Scholar 

  • Price SJ, Garner TW, Nichols RA et al (2014) Collapse of amphibian communities due to an introduced Ranavirus. Curr Biol 24:2586–2591

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

  • Reponen SE, Brown SK, Barnett BD et al (2014) Genetic and morphometric evidence on a Galápagos Island exposes founder effects and diversification in the first–known (truly) feral western dog population. Mol Ecol 23(2):269–283

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ASL, Pilgrim JD, Lamoreux JF et al (2006) The value of the IUCN Red List for conservation. Trends Ecol Evol 21:71–76

    Article  PubMed  Google Scholar 

  • Roelke-Parker ME, Munson L, Packer C et al (1996) A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 379:441–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rwego IB, Isabirye-Basuta G, Gillespie TR et al (2008) Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conserv Biol 22:1600–1607

    Article  PubMed  Google Scholar 

  • Scheele BC, Pasmans F, Skerratt LF et al (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363(6434):1459–1463

    Article  CAS  PubMed  Google Scholar 

  • Scheffer KC, Carrieri ML, Albas A, Santos HCP, Kotait I, Ito FH (2007) Rabies virus in naturally infected bats in the state of São Paulo, Southeastern Brazil. Rev Saúde Publ 41:389–395

    Article  Google Scholar 

  • Schiavini A, Narbaiza C (2015) Estado de situación de los conflictos derivados de las poblacions caninas en Tierra del Fuego. Informe realizado por solicitud del Comité de Emergencia Agroganadero y de Alerta Sanitaria de Tierra del Fuego, 40 pp

  • Schüttler E, Saavedra-Aracena L, Jiménez JE (2018) Domestic carnivore interactions with wildlife in the Cape Horn Biosphere Reserve, Chile: husbandry and perceptions of impact from a community perspective. PeerJ 6:e4124

    Article  PubMed  PubMed Central  Google Scholar 

  • Seimon TA, Miquelle DG, Chang TY et al (2013) Canine distemper virus: an emerging disease in wild endangered Amur Tigers (Panthera tigris altaica). mBio 4:e00410-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Sih A, Jonsson BG, Luikart G (2000) Habitat loss: ecological, evolutionary and genetic consequences. Trends Ecol Evol 15:132–134

    Article  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4(2)

  • Soberón J (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography 33:159–167

    Article  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Article  Google Scholar 

  • Soto-Azat C, Valenzuela-Sánchez A, Clarke BT et al (2013) Is chytridiomycosis driving Darwin’s frogs to extinction? PLoS ONE 8:e79862

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephens PR, Pappalardo P, Huang S et al (2017) Global Mammal Parasite Database version 2.0. http://www.mammalparasites.org/. Accessed 14 Nov 2017

  • Stöhr AC, Blahak S, Heckers KO et al (2013) Ranavirus infections associated with skin lesions in lizards. Vet Res 44:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Teacher AGF, Cunningham AA, Garner TWJ (2010) Assessing the long-term impact of Ranavirus infection in wild common frog populations. Anim Conserv 13:514–522

    Article  Google Scholar 

  • Thiermann A (2004) Emerging diseases and implications for global trade. Rev Sci Tech 23:701–707

    Article  CAS  PubMed  Google Scholar 

  • Toledo LF, Britto FB, Araújo OGS et al (2006) The occurrence of Batrachochytrium dendrobatidis in Brazil and the inclusion of 17 new cases of infection. South Am J Herpetol 1:185–191

    Article  Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP et al (2003) Introduced species and their missing parasites. Nature 421:628–630

    Article  CAS  PubMed  Google Scholar 

  • Uhart MM, Rago MV, Marull CA et al (2012) Exposure to selected Pathogens in to selected pathogens in Geoffroy’s cats and domestic carnivores from central Argentina. J Wildl Dis 4:899–909

    Article  Google Scholar 

  • Universidad Nacional del Sur and Ministerio de Ambiente y Desarrollo Sostenible. National information system on invasive alien species. Argentina. http://www.inbiar.uns.edu.ar. Accessed 13 Nov 2018

  • Urbanek S (2014) fastshp: fast routines for handling large ESRI shapefiles (.shp). R package version 0.1-0. http://www.rforge.net/fastshp

  • van Riper C, van Riper SG, Goff ML et al (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monog 56:327–344

    Article  Google Scholar 

  • Vanderhoeven S, Adriaens T, D’hondt B, et al (2015) A science-based approach to tackle invasive alien species in Belgium—the role of the ISEIA protocol and the Harmonia information system as decision support tools. Manag Biol Invasion 6:197–208

    Article  Google Scholar 

  • Vilcinskas A (2015) Pathogens as biological weapons of invasive species. PLoS Pathog 11:e1004714

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilcinskas A, Schmidberg H, Estoup A et al (2014) Evolutionary ecology of microsporidia associated with the invasive ladybird Harmonia axyridis. Insect Sci 22:313–324

    Article  PubMed  Google Scholar 

  • Wallem Stein KP, Ulloa N (2013) Procedimiento de evaluación técnico-científico para determinar el potencial invasor de especies exóticas de vertebrados e invertebrados, terrestres o acuáticos, presentes o no en Chile. Centro de Ecología Aplicada y Sustentabiladad (CAPES) Pontificia Universidad Católica, p 64

  • Walsh PD, Abernethy KA, Bermejo M et al (2003) Catastrophic ape decline in western equatorial Africa. Nature 422:611–614

    Article  CAS  PubMed  Google Scholar 

  • White LA, Forester JD, Craftc ME (2018) Disease outbreak thresholds emerge from interactions between movement behavior, landscape structure, and epidemiology. Proc Natl Acad Sci USA 115:7374–7379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Young HS, Parker IM, Gilbert GS (2017) Introduced species, disease ecology, and biodiversity-disease relationships. Trends Ecol Evol 32(1):41–54

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Universidad Nacional del Sur and CONICET for institutional support and anonymous reviewers for very helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano F. La Sala.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-finantial interests to disclose.

Ethics approval

Not applicable.

Consent for publication

All authors agreed with the content and that all gave explicit consent to submit and they obtained consent from the responsible authorities at the institute/organization where the work before the work was submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10530_2021_2488_MOESM1_ESM.docx

Table 1. Studied invasive alien species and pathogens potentially carried by them, type of pathogen (V: virus; B: bacteria; P: protozoan; EP: ectoparasite), epidemiological status and related disease. Under TNS are numbers of threatened native species (CR, EN, and VU) that could be at risk for pathogen transmission from each invasive species. References for table are provided in Online Resource 4 (DOCX 67 KB)

10530_2021_2488_MOESM2_ESM.docx

Table 2. Threatened native species at risk by pathogens potentially carried by invasive alien species in the Southern Cone of South America. R Reptiles (DOCX 70 KB)

10530_2021_2488_MOESM3_ESM.docx

Figure 1. Number of threatened native species potentially at risk for pathogen pathogen transmission from each invasive species, grouped by shared taxonomic level. Figure 2. Venn diagrams for a set of invasive alien species present in the Southern Cone of South America showing the distribution of pathogens between epidemiological categories and in their intersections. GLOBI: global + invasive; ENDOM: endemic + domestic; ENDIN: endemic + invasive. Diagrams correspond to (A) wild boar, (B) red deer, (C) domestic dog, (D) European hare, (E) American mink, (F) rock dove, (G) common starling, (H) common slider, and (I) American bullfrog (DOCX 1710 KB)

10530_2021_2488_MOESM4_ESM.docx

References for Table 1 and consulted sources for the spatial distribution of selected invasive alien species (DOCX 83 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Sala, L.F., Burgos, J.M., Scorolli, A.L. et al. Trojan hosts: the menace of invasive vertebrates as vectors of pathogens in the Southern Cone of South America. Biol Invasions 23, 2063–2076 (2021). https://doi.org/10.1007/s10530-021-02488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-021-02488-6

Keywords

Navigation