Skip to main content
Log in

A seaweed increases ecosystem multifunctionality when invading bare mudflats

  • Invasion Note
  • Published:
Biological Invasions Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Alho P (2003) Land cover characteristics in NE Iceland with special reference to jökulhlaup geomorphology. Geogr Ann Ser Phys Geogr 85:213–227

    Article  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C et al (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Article  Google Scholar 

  • Bishop MJ, Byers JE (2015) Predation risk predicts use of a novel habitat. Oikos 124:1225–1231

    Article  Google Scholar 

  • Byers JE, Gribben PE, Yeager C et al (2012) Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biol Invasions 14:2587–2600

    Article  Google Scholar 

  • Byrnes JEK, Gamfeldt L, Isbell F et al (2014a) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol Evol 5:111–124

    Article  Google Scholar 

  • Byrnes JEK, Lefcheck JS, Gamfeldt L et al (2014b) Multifunctionality does not imply that all functions are positively correlated. Proc Natl Acad Sci USA 111:E5490

    Article  CAS  PubMed  Google Scholar 

  • Cacabelos E, Engelen AH, Mejia A et al (2012) Comparison of the assemblage functioning of estuary systems dominated by the seagrass Nanozostera noltii versus the invasive drift seaweed Gracilaria vermiculophylla. J Sea Res 72:99–105

    Article  Google Scholar 

  • Cheng D-L, Niklas KJ (2006) Above-and below-ground biomass relationships across 1534 forested communities. Ann Bot 99:95–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordero ALH, Seitz RD (2014) Structured habitat provides a refuge from blue crab, Callinectes sapidus, predation for the bay scallop, Argopecten irradians concentricus (Say 1822). J Exp Mar Biol Ecol 460:100–108

    Article  Google Scholar 

  • Cordero ALH, Seitz RD, Lipcius RN et al (2012) Habitat affects survival of translocated bay scallops, Argopecten irradians concentricus (Say 1822), in lower Chesapeake Bay. Estuaries Coasts 35:1340–1345

    Article  Google Scholar 

  • Critchley A, Farnham W, Morrell S (1986) An account of the attempted control of an introduced marine alga, Sargassum muticum, in southern England. Biol Cons 35:313–332

    Article  Google Scholar 

  • Davoult D, Surget G, Stiger-Pouvreau V et al (2017) Multiple effects of a Gracilaria vermiculophylla invasion on estuarine mudflat functioning and diversity. Mar Environ Res 131:227–235

    Article  CAS  PubMed  Google Scholar 

  • Falls J (2008) The survival benefit of benthic macroalgae Gracilaria vermiculophylla as an alternative nursery habitat for juvenile blue crabs. Thesis, The College of William and Mary

  • Farnham W, Jones EG (1974) The eradication of the seaweed Sargassum muticum from Britain. Biol Cons 6:57–58

    Article  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson P (2005) Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecol Lett 8:696–703

    Article  Google Scholar 

  • Gonzalez DJ, Smyth AR, Piehler MF et al (2013) Mats of the nonnative macroalga, Gracilaria vermiculophylla, alter net denitrification rates and nutrient fluxes on intertidal mudflats. Limnol Oceanogr 58:2101–2108

    Article  CAS  Google Scholar 

  • Gonzalez DJ, Gonzalez RA, Froelich BA et al (2014) Non-native macroalga may increase concentrations of Vibrio bacteria on intertidal mudflats. Mar Ecol Prog Ser 505:29–36

    Article  Google Scholar 

  • Gray P, Jones EG (1977) The attempted clearance of Sargassum muticum from Britain. Environ Conserv 4:303–308

    Article  Google Scholar 

  • Guidone M, Newton C, Thornber CS (2014) Utilization of the invasive alga Gracilaria vermiculophylla (Ohmi) Papenfuss by the native mud snail Ilyanassa obsoleta (Say). J Exp Mar Biol Ecol 452:119–124

    Article  Google Scholar 

  • Gulbransen D, McGlathery K (2013) Nitrogen transfers mediated by a perennial, non-native macroalga: a N-15 tracer study. Mar Ecol Prog Ser 482:299–304

    Article  CAS  Google Scholar 

  • Gulbransen DJ, Thomsen MS, McGlathery KJ (2013) A global perspective on the Gracilaria vermiculophylla invasion: what is currently known and what is still needed. Dissertation, The University of Virginia

  • Hammann M, Buchholz B, Karez R et al (2013) Direct and indirect effects of Gracilaria vermiculophylla on native Fucus vesiculosus. Aquat Invasions 8:121–132

    Article  Google Scholar 

  • Hays JD (1965) Quaternary sediments of the Antarctic Ocean. Prog Oceanogr 4:117–131

    Article  Google Scholar 

  • Hensel MJ, Silliman BR (2013) Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc Natl Acad Sci USA 110:20621–20626

    Article  CAS  PubMed  Google Scholar 

  • Hewitt CL, Campbell ML, McEnnulty F et al (2005) Efficacy of physical removal of a marine pest: the introduced kelp Undaria pinnatifida in a Tasmanian Marine Reserve. Biol Invasions 7:251–263

    Article  Google Scholar 

  • Hoeffle H, Thomsen MS, Holmer M (2011) High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. Estuar Coast Shelf Sci 92:35–46

    Article  Google Scholar 

  • Hoeffle H, Wernberg T, Thomsen MS et al (2012) Drift algae, an invasive snail and elevated temperature reduces the ecological performance of a warm-temperate seagrass via additive effects. Mar Ecol Prog Ser 450:67–80

    Article  Google Scholar 

  • Holmer M, Wirachwong P, Thomsen MS (2011) Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species. Mar Biol 158:297–309

    Article  Google Scholar 

  • Hu Z-M, Juan L-B (2014) Adaptation mechanisms and ecological consequences of seaweed invasions: a review case of agarophyte Gracilaria vermiculophylla. Biol Invasions 16:967–976

    Article  Google Scholar 

  • Hunt L, Chadderton L, Stuart M et al (2009) Results of an attempt to control and eradicate Undaria pinnatifida in Southland, New Zealand, April 1997–November 2004. Department of Conservation, Invercargill

    Google Scholar 

  • Jiang L (2007) Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology 88:1075–1085

    Article  PubMed  Google Scholar 

  • Johnston CA, Lipcius RN (2012) Exotic macroalga Gracilaria vermiculophylla provides superior nursery habitat for native blue crab in Chesapeake Bay. Mar Ecol Prog Ser 467:137–146

    Article  Google Scholar 

  • Kellogg TB, Kellogg DE (1987) Recent glacial history and rapid ice stream retreat in the Amundsen Sea. J Geophys Res Solid Earth 92:8859–8864

    Article  Google Scholar 

  • Kollars NM, Byers JE, Sotka EE (2016) Invasive décor: an association between a native decorator worm and a non-native seaweed can be mutualistic. Mar Ecol Prog Ser 545:135–145

    Article  Google Scholar 

  • Kotta J, Kotta I, Simm M et al (2006) Ecological consequences of biological invasions: three invertebrate case studies in the north-eastern Baltic Sea. Helgol Mar Res 60:106–112

    Article  Google Scholar 

  • Laossi K-R, Barot S, Carvalho D et al (2008) Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures. Pedobiologia 51:397–407

    Article  Google Scholar 

  • Lefcheck JS, Byrnes JEK, Isbell F et al (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun 6:6936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindeboom H, Sandee A (1989) Production and consumption of tropical seagrass fields in eastern Indonesia measured with bell jars and microelectrodes. Neth J Sea Res 23:181–190

    Article  Google Scholar 

  • Löffler H (1997) The role of ostracods for reconstructing climatic change in Holocene and Late Pleistocene lake environment in Central Europe. J Paleolimnol 18:29–32

    Article  Google Scholar 

  • Maestre FT, Reynolds JF (2007) Biomass responses to elevated CO2, soil heterogeneity and diversity: an experimental assessment with grassland assemblages. Oecologia 151:512–520

    Article  PubMed  Google Scholar 

  • Martínez-Lüscher J, Holmer M (2010) Potential effects of the invasive species Gracilaria vermiculophylla on Zostera marina metabolism and survival. Mar Environ Res 69:345–349

    Article  CAS  PubMed  Google Scholar 

  • Nejrup LB, Staehr PA, Thomsen MS (2013) Temperature-and light-dependent growth and metabolism of the invasive red algae Gracilaria vermiculophylla—a comparison with two native macroalgae. Eur J Phycol 48:295–308

    Article  CAS  Google Scholar 

  • Nyberg CD, Thomsen MS, Wallentinus I (2009) Flora and fauna associated with the introduced red alga Gracilaria vermiculophylla. Eur J Phycol 44:395–403

    Article  Google Scholar 

  • Ramus AP, Silliman BR, Thomsen MS et al (2017) An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proc Natl Acad Sci USA 114:8580–8585

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939

    Article  Google Scholar 

  • Rowley R (1989) Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: Are populations regulated by settlement or post-settlement processes? Mar Biol 100:485–494

    Article  Google Scholar 

  • Rowley R (1990) Newly settled sea urchins in a kelp bed and urchin barren ground: a comparison of growth and mortality. Mar Ecol Prog Ser 62:229–240

    Article  CAS  Google Scholar 

  • Ruddiman W, Molfino B, Esmay A et al (1980) Evidence bearing on the mechanism of rapid deglaciation. Clim Change 3:65

    Article  Google Scholar 

  • Santos LN, Agostinho AA, Alcaraz C et al (2011) Artificial macrophytes as fish habitat in a Mediterranean reservoir subjected to seasonal water level disturbances. Aquat Sci 73:43–52

    Article  CAS  Google Scholar 

  • Schmidt AL, Scheibling RE (2007) Effects of native and invasive macroalgal canopies on composition and abundance of mobile benthic macrofauna and turf-forming algae. J Exp Mar Biol Ecol 341:110–130

    Article  Google Scholar 

  • Sotka EE, Byers JE (2018) Not so fast: promoting invasive species to enhance multifunctionality in a native ecosystem requires strong(er) scrutiny. Biol Invasions. https://doi.org/10.1007/s10530-018-1822-0

    Article  Google Scholar 

  • South PM, Floerl O, Forrest BM et al (2017) A review of three decades of research on the invasive kelp Undaria pinnatifida in Australasia: an assessment of its success, impacts and status as one of the world’s worst invaders. Mar Environ Res 131:243–257

    Article  CAS  PubMed  Google Scholar 

  • Thompson TL, Glenn EP (1994) Plaster standards to measure water motion. Limnol Oceanogr 39:1768–1779

    Article  Google Scholar 

  • Thomsen MS (2004) Species, thallus size and substrate determine macroalgal break force and break location in a low-energy soft-bottom lagoon. Aquat Bot 80:153–161

    Article  Google Scholar 

  • Thomsen MS (2010) Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat Invasions 5:341–346

    Article  Google Scholar 

  • Thomsen MS, McGlathery KJ (2005) Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar Coast Shelf Sci 62:63–73

    Article  Google Scholar 

  • Thomsen MS, McGlathery KJ (2006) Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. J Exp Mar Biol Ecol 328:22–34

    Article  Google Scholar 

  • Thomsen MS, McGlathery KJ (2007) Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon. Biol Invasions 9:499–513

    Article  Google Scholar 

  • Thomsen MS, McGlathery KJ, Tyler AC (2006) Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnative Gracilaria vermiculophylla and Coldium fragile. Estuaries Coasts 29:465–473

    Article  CAS  Google Scholar 

  • Thomsen MS, Silliman BR, McGlathery KJ (2007a) Spatial variation in recruitment of native and invasive sessile species onto oyster reefs in a temperate soft-bottom lagoon. Estuar Coast Shelf Sci 72:89–101

    Article  Google Scholar 

  • Thomsen MS, Staehr PA, Nyberg CD et al (2007b) Gracilaria vermiculophylla in northern Europe, with focus on Denmark, and what to expect in the future. Aquat Invasions 2:83–94

    Article  Google Scholar 

  • Thomsen MS, McGlathery KJ, Schwarzschild A et al (2009a) Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biol Invasions 11:2303–2316

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Tuya F et al (2009b) Evidence for impacts of non-indigenous macroalgae: a meta-analysis of experimental field studies. J Phycol 45:812–819

    Article  PubMed  Google Scholar 

  • Thomsen MS, Wernberg T, Altieri AH et al (2010) Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol 50:158–175

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Olden JD et al (2011) A framework to study the context-dependent impacts of marine invasions. J Exp Mar Biol Ecol 400:322–327

    Article  Google Scholar 

  • Thomsen MS, De Bettignies T, Wernberg T et al (2012a) Harmful algae are not harmful to everyone. Harmful Algae 16:74–80

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Engelen AH et al (2012b) A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS ONE 7:e28595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen MS, Staehr PA, Nejrup LB et al (2013) Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat Invasions 8:133–145

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Olden JD et al (2014) Forty years of experiments on invasive species: Are biases limiting our understanding of impacts? Neobiota 22:1–22

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, South PM et al (2016a) To include or not to include (the invader in community analyses)? That is the question. Biol Invasions 18:1515–1521

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, South PM et al (2016b) Non-native seaweeds drive changes in marine coastal communities around the world. In: Hu Z-M, Fraser C (eds) Seaweed phylogeography. Springer, Dordrecht, pp 147–185

    Chapter  Google Scholar 

  • Valentine JP, Johnson CR (2005) Persistence of sea urchin (Heliocidaris erythrogramma) barrens on the east coast of Tasmania: inhibition of macroalgal recovery in the absence of high densities of sea urchins. Bot Mar 48:106–115

    Article  Google Scholar 

  • Whyte R (1971) Geology and palaeogeography of Chibuluma West Orebody, Zambian copperbelt; part I, geology of Chibuluma West. Econ Geol 66:400–409

    Article  CAS  Google Scholar 

  • Wotton DM, O’Brien C, Stuart MD et al (2004) Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Mar Pollut Bull 49:844–849

    Article  CAS  PubMed  Google Scholar 

  • Wright JT, Byers JE, DeVore JL et al (2014) Engineering or food? Mechanisms of facilitation by a habitat forming invasive seaweed. Ecology 95:2699–2706

    Article  Google Scholar 

Download references

Acknowledgements

We thank two reviewers for comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron P. Ramus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5,191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, M.S., Ramus, A.P., Long, Z.T. et al. A seaweed increases ecosystem multifunctionality when invading bare mudflats. Biol Invasions 21, 27–36 (2019). https://doi.org/10.1007/s10530-018-1823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1823-z

Keywords

Navigation