Skip to main content
Log in

Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes?

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

I sampled recruitment of very small sea urchins (Strongylocentrotus spp.) by using the anesthetic magnesium chloride to remove individuals from substrata collected in sea-urchin barren grounds (barrens) and kelp beds at Naples Reef near Santa Barbara, California, USA. Preliminary sampling found low numbers of newly settled individuals(<0.6 mm test diam) from April–July in 1984 and 1985, and in April, 1986. In early May, 1986, I found many newly settled seaurchins (0.3 to 0.6 mm, 5 to 17 d old), and I compared the densities of the cohort on several types of natural substrata in barrens and kelp-bed habitats. Newly settled individuals of both purple sea urchins (S. purpuratus) and red sea urchins (S. franciscanus) were present in similar, high densities (1 000 S. purpuratus m-2) on foliose red algal turf, a dominant substratum ofthe kelp bed, and on crustose coralline algae, the dominant substratum of an adjacent barrens. Larvae of S. purpuratus reared and tested in the laboratory showed high rates of settlement on both red algal turf and on crustose coralline algae, but significantly lower rates on rock. Larvae also settled in response to a partiallypurified extract of coralline algae. The reduced settlement on natural rock surfaces relative to either algal treatment and the significant settlement in response to the extract of coralline algae indicate that larvae discriminate between natural substrata and probably respond to a settlement cue other than, or in addition to, a simple microbial (bacterial) film. The similar densities of young recruits of S. purpuratus on dominant substrata of barrens and kelp bed show that, at least in this case, differential settlement cannot explain the high densities of sea urchins in the barrens habitat. Movement between barrens and kelp bed is unlikely given the small sizes of the newly recruited sea urchins relative to the large distances often involved. Reduced post-settlement mortality of newly settled individuals in the barrens remains the most likely mechanism leading to the higher densities of sea urchins in barrens relative to kelp-bed habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Andrew, N. L., Choat, J. H. (1982). The influence of predation and conspecific adults on the abundance of juvenile Evechinus chloroticus (Echinoidea: Echinometridae). Oecologia 54: 80–87

    Google Scholar 

  • Andrew, N. L., Choat, J. H. (1985). Habitat related differences in the survivorship and growth of juvenile sea urchins. Mar. Ecol. Prog. Ser. 27: 155–161

    Google Scholar 

  • Baker, R. J., Nelder, J. A. (1978). The GLIM system. Release 3. Numerical Algorithms Group, Oxford

    Google Scholar 

  • Barker, M. F. (1977). Observations on the settlement of the brachiolaria larvae of Stichaster australis and Coscinasterias calamaria in the laboratory and on the shore. J. exp. mar. Biol. Ecol. 30: 95–108

    Google Scholar 

  • Barker, M. F. (1979). Breeding and recruitment in a population of the New Zealand starfish Stichaster australis (Verill). J. exp. mar. Biol. Ecol. 41: 195–211

    Google Scholar 

  • Bernstein, B. B., Jung, N. (1979). Selective pressures and coevolution in a kelp canopy community in southern California. Ecol. Monogr. 49: 335–355

    Google Scholar 

  • Berstein, B. B., Williams, B. E., Mann, K. H. (1981). The role of behavioral responses to predators in modifying urchins' (Strongylocentrootus droebachiensis) destructive grazing and seasonal foraging patterns. Mar. Biol. 63: 39–49

    Google Scholar 

  • Bray, R. N. (1981). Influence of water currents and zooplankton densities on daily foraging movements of blacksmith, Chromis punctipinnis, a planktivorous reef fish. Fish. Bull. U.S. 78: 829–841

    Google Scholar 

  • Breitburg, D. L. (1984). Residual effects of grazing: inhibition of competitor recruitment by encrusting coralline algae. Ecology 65: 1136–1143

    Google Scholar 

  • Cameron, R. A., Hinegardner, R. (1974). Initiation of metamorphosis in laboratory-cultured sea urchins. Biol. Bull. mar. biol. Lab., Woods Hole 146: 355–342

    Google Scholar 

  • Cameron, R. A., Schroeter, S. C. (1980). Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar. Ecol. Prog. Ser. 2: 243–247

    Google Scholar 

  • Chapman, A. R. O. (1981). Stability of sea urchin dominated barren grounds following destructive grazing of kelp in St. Margaret's Bay, castern Canada. Mar. Biol. 62: 307–311

    Google Scholar 

  • Chia, F. S., Young, C. M., McEuen, F. S. (1984). The role of larval settlement behavior in controlling patterns of abundance in echinoderms. In: Engels, W. (ed.) Advances in invertebrate reproduction, Vol. 3. Elsevier, New York, p. 409–424

    Google Scholar 

  • Connell, J. H. (1975). Some mechanisms producing structure in natural communities; a model and evidence from field experiments. In: Cody, M. L., Diamond, J. M. (eds.) Ecology and evolution of communities. Belknap Press, Cambridge, p. 460–490

    Google Scholar 

  • Connell, J. H. (1985). The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. J. exp. mar. Biol. Ecol. 93: 11–45

    Google Scholar 

  • Cowen, R. K. (1983). The effect of sheephead (Semicossyphus pulcher) predation on red sea urchin (Strongylocentrotus franciscanus) populations: an experimental analysis. Oecologia 58: 249–255

    Google Scholar 

  • Dayton, P. K. (1985). Ecology of kelp communities. A. Rev. Ecol. Syst. 16: 215–245

    Google Scholar 

  • Dayton, P. K., Tegner, M. J. (1984). The importance of scale in community ecology: a kelp forest example with terrestrial analogs. In: Price, P. W., Slobodchikoff, C. N., Gaud, W. S. (eds.) A new ecology: novel approaches to interactive systems. Wiley, New York, p. 457–481

    Google Scholar 

  • Dean, T. A., Schroeter, S. C., Dixon, J. D. (1984). Effects of grazing by two species of sea urchins (Strongylocentrotus franciscanus and Lytechinus anamesus) on recruitment and survival of two species of kelp (Macrocystis pyrifera and Pterygophora califonica). Mar. Biol. 78: 301–313

    Google Scholar 

  • Ebeling, A. W., Larson, R. J., Alevizon, W. S. (1980a). Habitat groups and island-mainland distribution of kelp-bed fishes off Santa Barbara, California. In: Power, D. M. (ed.) Multidisciplinary Symposium on the California Islands. Santa Barbara Museum of Natural History, Santa Barbara, California, USA, p. 403–431

    Google Scholar 

  • Ebeling, A. W., Larson, R. J., Alevizon, W. S., Bray, R. N. (1980b). Annual variability of reef fish assemblages in kelp forests off Santa Barbara, California. Fish. Bull. U.S. 78: 361–377

    Google Scholar 

  • Ebeling, A. W., Laur, D. R., Rowley, R. J. (1985). Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 84: 287–294

    Google Scholar 

  • Ebeling, A. W., Laur, D. R., Rowley, R. J. (1988). Severe storms, sea urchins, and disturbance-driven kelp forests. (Abstracts and reports from the symposium/workshop on the marine environment of Santa Barbara and its coastal waters, held January 6, 1988, in Santa Barbara.) NOAA natn. mar. Fish. Serv. tech. Memo. U.S. Dep. Commerce (Mar. estuar. Mgmt div.)

  • Ebert, T. A. (1967). Negative growth and longevity in the purple sea urchin Strongylocentrotus purpuratus. Science N.Y. 157: 557–558

    Google Scholar 

  • Ebert, T. A. (1968). Growth rates of the sea urchin (Strongylocentrotus purpuratus) related to food availability and spine abrasion. Ecology 49: 1075–1091

    Google Scholar 

  • Ebert, T. A. (1975). Growth and mortality of post-larvalechinoids. Am. Zool. 15: 755–775

    Google Scholar 

  • Ebert, T. A. (1982). Longevity, life history, and relative body wall size in sea urchins. Ecol. Monogr. 52: 535–394

    Google Scholar 

  • Ebert, T. A. (1983). Recruitment in echinoderms. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm studies, Vol. I. Balkema, Rotterdam, p. 169–203

    Google Scholar 

  • Ebert, T. A., Russell, M. P. (1988). Latitudinal variation in size structure of the west coast purple sea urchin: a correlation with headlands. Limnol. Oceanogr. 33: 286–294

    Google Scholar 

  • Emlet, R. B., McEdward, L. R., Strathmann, R. R. (1987). Echinoderm larval ecology viewed from the egg. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm studies, Vol. 2. Balkema, Rotterdam, p. 55–136

    Google Scholar 

  • Estes, J. A., Harrold, C. (1988). Sea otters, sea urchins, and kelp beds: some questions of scale. In: VanBlaricom, G. R., Estes, J. A. (eds.) The community ecology of sea otters. Springer-Verlag, New York, p. 116–150

    Google Scholar 

  • Foster, M. S., Schiel, D. R. (1985). The ecology of giant kelp forests in California: a community profile. U.S. Fish Wildl. Serv. biol. Rep. 85 (7.2): 1–153

    Google Scholar 

  • Gaines, S., Roughgarden, J. (1985). Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc. natn. Acad. Sci. U.S.A. 82: 3707–3711

    Google Scholar 

  • Harrold, C., Reed, D. C. (1985). Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66: 1160–1169

    Google Scholar 

  • Highsmith, R. C. (1982). Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites: adult sand dollar beds. Ecology 63: 329–337

    Google Scholar 

  • Himmelman, J. H., Lavergne, Y., Axelsen, F., Cardinal, A., Bourget, E. (1983). Sea urchins in the Saint Lawrence Estuary: their abundance, size-structure, and suitability for commercial exploitation. Can. J. Fish. aquat. Sciences 40: 474–486

    Google Scholar 

  • Hinegardner, R. T. (1969). Growth and development of the laboratory-cultured sea urchin. Biol. Bull. mar. biol. Lab., Woods Hole 137: 465–475

    Google Scholar 

  • Jackson, G. A., Winant, C. D. (1983). Effect of a kelp forest on coastal current. Contin. Shelf Res. 2: 75–80

    Google Scholar 

  • Keough, M. J., Downes, B. J. (1982). Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia 54: 348–352

    Google Scholar 

  • Lang, C., Mann, K. H. (1976). Changes in sea urchin populations after the destruction of kelp beds. Mar. Biol. 36: 321–326

    Google Scholar 

  • Laur, D. R., Ebeling, A. W. (1983). Predator-prey relationships in surfperches. Envir. Biol. Fish. 8: 217–229

    Google Scholar 

  • Laur, D. R., Ebeling, A. W., Coon, D. A. (1988). Effects of sea otter foraging on subtidal reef communities off central California. In: VanBlaricom, G. R., Estes, J. A. (eds.) The community ecology of sea otters. Springer-Verlag, New York, p. 150–168

    Google Scholar 

  • Lawrence, J. M. (1975). On the relationships between marine plants and seaweeds. Oceanogr. mar. Biol. A. Rev. 13: 213–286

    Google Scholar 

  • Leahy, P. S. (1986). Laboratory culture of Strongylocentrotus purpuratus adults, embryos and larvae. In: Schroeder, T. E. (ed.) Methods in cell biology. Vol. 27. Academic Press, Orlando, p. 1–13

    Google Scholar 

  • Luckenbach, M. W. (1984). Settlement and early post-settlement survival in the recruitment of Mulinia lateralis (Bivalvia). Mar. Ecol. Prog. Ser. 17: 245–250

    Google Scholar 

  • McPherson, B. F. (1965). Contributions to the biology of the sea urchin Tripneustes ventricosus. Bull. mar. Sci. 15: 228–244

    Google Scholar 

  • Menge, B. A., Sutherland, J. P. (1976). Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity. Am. Nat. 110: 351–369

    Google Scholar 

  • Menge, B. A., Sutherland, J. P. (1987). Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130: 730–757

    Google Scholar 

  • Mitchell, R., Kirchman, D. (1984). The microbial ecology of marine surfaces. In: Costlow, J. D., Tipper, R. C. (eds.) Marine biodeterioration; an interdisciplinary study. Naval Institute Press, Annapolis, p. 49–56

    Google Scholar 

  • Morse, A. N. C., Froyd, C. A., Morse, D. E. (1984). Molecules from cyanobacteria and red algae that induce larval settlement and metamorphosis in the mollusc Haliotis rufescens. Mar. Biol. 81: 293–298

    Google Scholar 

  • Morse, D. E., Hooker, N., Duncan, H., Jensen, L. (1979). Gammaaminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science, N.Y. 204: 407–410

    Google Scholar 

  • Neter, J., Wasserman, W. (1974). Applied linear statistical models. R. O. Irwin, Inc., Homewood, Illinois

    Google Scholar 

  • Paine, R. T. (1977). Controlled manipulations in the marine intertidal zone, and their contributions to ecological theory. Spec. Publs Acad. nat. Sci. Philad. 12: 245–270

    Google Scholar 

  • Paine, R. T. (1980). Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49: 667–685

    Google Scholar 

  • Paine, R. T. (1980). Ecological determinism in the competition for space. Ecology 65: 1339–1348

    Google Scholar 

  • Pearse, J. S., Clark, M. E., Leighton, D. L., Mitchell, C. T., North, W. J. (1970). Marine waste disposal and sea urchin ecology. A. Rep. W. M. Keck Lab. envrl Hlth Engng, Calif. Inst. Technol. Kelp Habit Improvement Project 1969–1970: 1–89

    Google Scholar 

  • Pearse, J. S., Hines, A. H. (1987). Long-term population dynamics of sea urchins in a central California kelp forest: rare recruitment and rapid decline. Mar. Ecol. Prog. Ser. 39: 275–283

    Google Scholar 

  • Raymond, B. G., Scheibling, R. E. (1987). Recruitment and growth of the sea urchin Strongylocentrotus droebachiensis (Müller) following mass mortalities off Nova Scotia, Canada. J. exp. mar. Biol. Ecol. 108: 31–54

    Google Scholar 

  • Roughgarden, J., Iwasa, Y., Baxter, C. (1985). Demographic theory for an open marine population with space-limited recruitment. Ecology 66: 54–67

    Google Scholar 

  • Schiel, D. R., Foster, M. S. (1986). The structure of subtidal algal stands in temperate waters. Oceanogr. mar. Biol. A. Rev. 24: 265–307

    Google Scholar 

  • Shepherd, S. A., Turner, J. A. (1985). Studies on southern Australian abalone (genus Haliotis). VI. habitat preference, abundance and predators of juveniles. J. exp. mar. Biol. Ecol. 93: 285–298

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., San Francisco

    Google Scholar 

  • Swan, E. F. (1958). Growth and variation in sea urchins of York, Marine, J. mar. Res. 17: 505–522

    Google Scholar 

  • Swan, E. F. (1961). Some observations on the growth rate of sea urchins in the genus Strongylocentrotus. Biol. Bull. mar. biol. Lab., Woods Hole 120: 420–427

    Google Scholar 

  • Tegner, M. J., Dayton, P. K. (1977). Sea urchin recruitment patterns and implications of commercial fishing. Science, N.Y. 196: 324–326

    Google Scholar 

  • Tegner, M. J., Dayton, P. K. (1981). Population structure, recruitment and mortality of two sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in a kelp forest. Mar. Ecol. Prog. Ser. 5: 255–268

    Google Scholar 

  • Trapido-Rosenthal, H. G., Morse, D. E. (1986). Regulation of receptor-mediated settlement and metamorphosis in larvae of a gastropod mollusc (Haliotis rufescens). Bull. mar. Sci. 39: 383–392

    Google Scholar 

  • Underwood, A. J., Denley, E. J. (1984). Paradigms, explanations, and generalizations in models for the structure of intertidal communities on rocky shores. In: Strong, D. R., Simberloff, D., Abele, L. G., Thistle, A. B. (eds.) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, p. 151–180

    Google Scholar 

  • Victor, B. (1986). Larval settlement and juvenile mortality in a recruitment-limited coral reef fish population. Ecol. Monogr. 156: 145–160

    Google Scholar 

  • Wethey, D. S. (1985). Local and regional variation in settlement in the littoral barnacle Semibalanus balanoides (L.): patterns and consequences. In: Moore, P. G., Seed, R. (eds.) The ecology of rocky coasts. Hodder and Stoughton, Toronto, p. 194–202

    Google Scholar 

  • Woodin, S. A. (1985). Effects of defecation by arenicolid polychaete adults on spionid polychaete juveniles in field experiments: selective settlement or differential mortality. J. exp. mar. Biol. Ecol. 87: 119–132

    Google Scholar 

  • Woodin, S. A. (1986). Settlement of infauna: larval choice?. Bull. mar. Sci. 39: 401–407

    Google Scholar 

  • Yool, A. J., Grau, S. M., Hadfield, M. G., Jensen, R. A., Markell, D. A., Morse, D. E. (1986). Excess potassium induces larval metamorphosis in four marine invertebrate species. Biol. Bull. mar. biol. Lab., Woods Hole 170: 255–266

    Google Scholar 

  • Young, C. M., Chia, F.-S. (1982). Factors controlling spatial distribution of the sea cucumber Psolus chitinoides: settling and postsettling behavior. Mar. Biol. 69: 195–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowley, R.J. Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: are populations regulated by settlement or post-settlement processes?. Mar. Biol. 100, 485–494 (1989). https://doi.org/10.1007/BF00394825

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394825

Keywords

Navigation