Skip to main content

Advertisement

Log in

The potential range of Ailanthus altissima (tree of heaven) in South Africa: the roles of climate, land use and disturbance

  • URBAN INVASIONS
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive trees are a major problem in South Africa. Many species are well established whereas others are still in the early stages of invasion. The management of invasive species is most cost effective at the early stages of invasion; it is thus essential to target and contain naturalizing invaders before they spread across the landscape. Multi-scale species distribution models (SDMs) provide useful insights to managers; they combine species-occurrence observations with climatic variables to predict potential distributions of alien species. Applying SDMs in human-dominated ecosystems is complicated because many factors associated with human actions interact in complex ways with climatic and edaphic factors to determine the potential suitability of sites for species. The aim of this study was to determine the degree to which a worldwide invader, A. altissima (Simaroubaceae) has occupied its potential range in South Africa, to identify areas at risk of future invasion. To do this we built a set of SDMs at both global and country scales using climatic, land use and human-footprint data. Climatic data best explained the distribution of A. altissima at the global scale whereas variables reflecting human-mediated disturbances were most influential at the national scale. Our analyses show the importance of human-mediated disturbances at a global scale and human occupancy at a country scale in determining the range limits of A. altissima. Populations of this tree species are already present in most parts of South Africa that are environmentally suitable for the species, and management actions need to focus on preventing increases in density in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albright TP, Chen H, Chen L, Guo Q (2010) The ecological niche and reciprocal prediction of the disjunct distribution of an invasive species: the example of Ailanthus altissima. Biol Invasions 12:2413–2427

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, Kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Arino O, Pérez Ramos JJ, Kalogirou V, Bontemps S, Defourny P, Van Bogaert E (2012) Global land cover map for 2009 (GlobCover 2009). European Space Agency (ESA) and Université Catholique de Louvain (UCL)

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • BGIS: Biodiversity GIS. http://bgis.sanbi.org/DEA_Landcover/project.asp

  • Bory G, Sidibe MD, Clair-Maczulajtys D (1991) Effects of cutting back on the carbohydrate and lipid reserves in the tree of heaven (Ailanthus glandulosa Desf Simaroubaceae). Ann For Sci 48:1–13

    Article  Google Scholar 

  • Bradlow FR (1965) Baron von Ludwig and the Ludwig’s-burg garden. Balkema, Cape Town

    Google Scholar 

  • Burch PL, Zedaker SM (2003) Removing the invasive tree Ailanthus altissima and restoring natural cover. J Arboric 29:18–24

    Google Scholar 

  • Cabra-Rivas I, Saldaña A, Castro-Díez P, Gallien L (2016) A multi-scale approach to identify invasion drivers and invaders’ future dynamics. Biol Invasions 18:411–426

    Article  Google Scholar 

  • Celesti-Grapow L, Blasi C (2004) The role of alien and native weeds in the deterioration of archaeological remains in Italy. Weed Technol 18:1508–1513

    Article  Google Scholar 

  • Clark J, Wang Y, August PV (2014) Assessing current and projected suitable habitats for tree-of-heaven along the Appalachian Trail. Philos Trans R Soc B 369:20130192. doi:10.1098/rstb.2013.0192

    Article  Google Scholar 

  • Constán-Nava S, Bonet A, Pastor E, José Lledó M (2010) Long-term control of the invasive tree Ailanthus altissima: insights from Mediterranean protected forests. For Ecol Manage 260:1058–1064

    Article  Google Scholar 

  • Crossman ND, Bass DA (2008) Application of common predictive habitat techniques for post-border weed risk management. Divers Distrib 14:213–224

    Article  Google Scholar 

  • Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E (2014) Potential species distribution modeling and the use of principal component analysis as predictor variables. Revi Mex Biodivers 85:189–199

    Article  Google Scholar 

  • Donaldson JE, Hui C, Richardson DM, Wilson JRU, Robertson MP, Webber BL (2014) Invasion trajectory of alien trees: the role of introduction pathway and planting history. Global Change Biol 20:1527–1537

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677

    Article  Google Scholar 

  • Faraway JJ (2016) Extending the linear model with R. Generalized linear, mixed effects and nonparametric regression models. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Foxcroft LC, Pyšek P, Richardson DM, Genovesi P, MacFadyen S (2017) Plant invasion science in protected areas: progress and priorities. Biol Invasions 19:1353–1378

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  Google Scholar 

  • Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: Where to go from here? Divers Distrib 16:331–342

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S, Zimmermann NE, Thuiller W (2012) Invasive species distribution model—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136

    Article  Google Scholar 

  • Gassó N, Thuiller W, Pino J, Vilà M (2012) Potential distribution range of invasive plant species in Spain. NeoBiota 12:25–45

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Graham CH, Elith J, Huettman F (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Article  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    Article  PubMed  Google Scholar 

  • Henderson L (1998) Southern African plant invaders Atlas (SAPIA). Appl Plant Sci 12:31–32

    Google Scholar 

  • Henderson L (2007) Invasive, naturalized and casual alien plants in southern Africa: a summary based on the Southern African Plant Invaders Atlas (SAPIA). Bothalia 37:215–248

    Article  Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol 12:2272–2281

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Huebner CD (2003) Vulnerability of oak-dominated forests in West Virginia to invasive exotic plants: temporal and spatial patterns of nine exotic species using herbarium records and land classification data. Castanea 68:1–14

    Google Scholar 

  • Hui C, Richardson DM (2017) Invasion dynamics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Ibáñez I, Silander JA, Wilson JRU, LaFleur N, Tanaka N, Tsuyama I (2009) Multivariate forecasts of potential distributions of invasive plant species. Ecol Appl 19:359–375

    Article  PubMed  Google Scholar 

  • Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. Ann New York Acad Sci 1134:1–24

    Article  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Kaplan H, van Niekerk A, Le Roux JJ, Richardson DM, Wilson JRU (2014) Incorporating risk mapping at multiple spatial scales into eradication management plans. Biol Invasions 16:691–703

    Article  Google Scholar 

  • Knapp LB, Canham CD (2000) Invasion of an old-growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127:307–315

    Article  Google Scholar 

  • Kowarik I (1995) Clonal growth in Ailanthus altissima on a natural site in West Virginia. J Veg Sci 6:853–856

    Article  Google Scholar 

  • Kowarik I, Säumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Pers Plant Ecol Evol Syst 8:207–237

    Article  Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C, Arianoutsou M, Essl F, Jarosik V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kuehn I, Marchante H, Perglova I, Pino J, Vilà M, Zikos A, Roy D, Hulme PE (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Lawrence JG, Colwell A, Sexton OJ (1991) The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). Am J Bot 78:948–958

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Marcer A, Pino J, Pons X, Brotons L (2012) Modelling invasive alien species distributions from digital biodiversity atlases. Model upscaling as a means of reconciling data at different scales. Divers Distrib 18:1177–1189

    Article  Google Scholar 

  • McGill BJ (2010) Matters of scale. Science 328:575–576

    Article  CAS  PubMed  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Mgidi TN, Le Maitre DC, Schonegevel L, Nel JL, Rouget M, Richardson DM (2007) Alien plant invasions—incorporating emerging invaders in regional prioritization: a pragmatic approach for Southern Africa. J Environm Manage 84:173–187

    Article  Google Scholar 

  • Nel JL, Richardson DM, Rouget M, Mgidi TN, Mdzeke N, Le Maitre DC, Van Wilgen BW, Schonegevel L, Henderson L, Neser S (2004) A proposed classification of invasive alien plant species in South Africa: towards prioritizing species and areas for management action. S Afr J Sci 100:53–64

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martínez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Potgieter LJ, Gaertner M, Kueffer C, Larson BMH, Livingstone S, O’Farrell P, Richardson DM (2017) Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biol Invasions. doi:10.1007/s10530-017-1589-8

    Google Scholar 

  • Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson DM, Macdonald IAW, Hoffmann JH, Henderson L (1997) Alien plant invasions. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of Southern Africa. Cambridge University Press, Cambridge, pp 535–570

    Google Scholar 

  • Richardson DM, Iponga DM, Roura-Pascual N, Krug RM, Milton SJ, Hughes GO, Thuiller W (2010) Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree Schinus molle in South Africa. Ecography 33:1049–1061

    Article  Google Scholar 

  • Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  • Robertson MP, Visser V, Hui C (2016) Biogeo: an R package for assessing and improving data quality of occurrence record datasets. Ecography 39:394–401

    Article  Google Scholar 

  • Rouget M, Richardson DM (2003) Understanding patterns of plant invasion at different spatial scales: quantifying the roles of environment and propagule pressure. In: Child LE, Brock JH, Brundu G, Prach K, Pyšek P, Wade PM, Williamson M (eds) Plant Invasions: ecological threats and management solutions. Backhuys Publishers, Leiden, pp 3–15

    Google Scholar 

  • Rouget M, Robertson MP, Wilson JRU, Hui C, Essl F, Renteria JL, Richardson DM (2015) Invasion debt–quantifying future biological invasions. Divers Distrib 22:445–456

    Article  Google Scholar 

  • Roura-Pascual N, Brotons L, Peterson AT, Thuiller W (2009) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol Invasions 11:1017–1031

    Article  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904

    Article  Google Scholar 

  • Shackleton RT, Le Maitre DC, van Wilgen BW et al (2017) Strategic planning and prioritisation for the management of a widespread invasive tree (Prosopis: mesquite) in South Africa. Ecosyst Serv. doi:10.1016/j.ecoser.2016.11.022 (in press)

    Google Scholar 

  • Shaver GR, Canadell J, Chapin FS et al (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience 50:871–882

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Pearson RG, Whittaker RJ, Brotons L, Lavorel S (2004) Uncertainty in predictions of extinction risk. Nature 430:33

    Article  CAS  Google Scholar 

  • Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R (2013) biomod2: ensemble platform for species distribution modelling. R package version 3.1-18. http://cran.r-project.org/web/packages/biomod2/index.html

  • Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Van Wilgen BW, Dyer C, Hoffmann JH et al (2011) National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Divers Distrib 17:1060–1075

    Article  Google Scholar 

  • Vaz AS, Kull CA, Kueffer C et al (2017) Integrating ecosystem disservices and services: insights from plant invasions. Ecosyst Serv 23:94–107

    Article  Google Scholar 

  • Walker GA, Gaertner M, Robertson MP, Richardson DM (2017) The prognosis for Ailanthus altissima (Simaroubaceae; tree of heaven) as an invasive species in South Africa; insights from its performance elsewhere in the world. S Afr J Bot 112:283–289

    Article  Google Scholar 

  • Wilson JRU, Ivey P, Manyama P, Nänni I (2013) A new national unit for invasive species detection, assessment and eradication planning. S Afr J Sci 109(5/6):1–13. doi:10.1590/sajs.2013/20120111

    Article  Google Scholar 

  • Wilson JRU, Panetta FD, Lindgren C (2016) Detecting and responding to alien plant incursions. Cambridge University Press, Cambridge

    Google Scholar 

  • Wittenberg R, Cock MJ (2005) Best practices for the prevention and management of invasive alien species. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasive alien species. A new synthesis. Island Press, Washington, pp 209–232

    Google Scholar 

  • Woolmer G, Trombulak SC, Ray JC, Doran PJ, Anderson MG, Baldwin RF, Morgan A, Sanderson EW (2008) Rescaling the human footprint: a tool for conservation planning at an ecoregional scale. Landscape Urban Plan 87:42–53

    Article  Google Scholar 

Download references

Acknowledgements

This project was jointly funded by BTA Pipe Supplies and the DST-NRF Centre of Excellence for Invasion Biology. DMR acknowledges funding from the DST-NRF Centre of Excellence for Invasion Biology and the National Research Foundation of South Africa (Grant 85417). We thank many staff members from the City of Cape Town’s Environmental Resource Management Department (ERMD) and the Invasive Species Unit of the South African National Biodiversity Institute who provided support and field-work assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Richardson.

Additional information

Guest Editors: Mirijam Gaertner, John R.U. Wilson, Marc W. Cadotte, J. Scott MacIvor, Rafael D. Zenni and David M. Richardson/Urban Invasions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, G.A., Robertson, M.P., Gaertner, M. et al. The potential range of Ailanthus altissima (tree of heaven) in South Africa: the roles of climate, land use and disturbance. Biol Invasions 19, 3675–3690 (2017). https://doi.org/10.1007/s10530-017-1597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1597-8

Keywords

Navigation