Skip to main content
Log in

Genetic population structure of the invasive ash dieback pathogen Hymenoscyphus fraxineus in its expanding range

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Introduced plant pathogens are increasingly recognized as a major threat to biodiversity and ecosystem functioning. One such pathogen, the causal agent of the devastating ash dieback in Europe, Hymenoscyphus fraxineus, was most likely introduced into Europe from eastern Asia in the 1990s. To investigate the genetic population structure of this invasive fungus at the epidemic disease front (Switzerland) and in the post-epidemic phase (Lithuania), a total of 847 H. fraxineus isolates were genotyped at 11 microsatellite loci. Among these isolates, 244 multilocus genotypes were found in five post-epidemic subpopulations (367 isolates) of the fungus and 263 in five epidemic subpopulations (480 isolates). No genetic differentiation was found between isolates recovered from bark lesions and fallen leaf petioles, which suggests that all H. fraxineus genotypes have the potential to induce bark infections on living trees and to survive saprophytically. Moreover, no genetic differentiation and no difference in genetic diversity were detected between the epidemic and post-epidemic populations. The entire genetic diversity present in the original founding populations in north-eastern Europe seems to have been transmitted to the epidemic disease front. Nonetheless, gene flow among post-epidemic subpopulations occurs slightly more random than among epidemic subpopulations. Furthermore, the probability of correct assignment of a particular H. fraxineus genotype to its subpopulation of origin was greater in Switzerland than in Lithuania. These two analyses point to weak founder effects at the disease front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agapow P-M, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102

    Article  CAS  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17(1):24–30

    Article  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544

    Article  PubMed  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Austerlitz F, Jung-Muller B, Godelle B, Gouyon P-H (1997) Evolution of coalescence times, genetic diversity and structure during colonization. Theor Popul Biol 51:148–164

    Article  Google Scholar 

  • Barrett LG, Thrall PH, Burdon JJ, Linde CC (2008) Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol Evol 23(12):678–685

    Article  PubMed Central  PubMed  Google Scholar 

  • Bengtsson SBK, Vasaitis R, Kirisits T, Solheim H, Stenlid J (2012) Population structure of Hymenoscyphus pseudoalbidus and its genetic relationship to Hymenoscyphus albidus. Fungal Ecol 5(2):147–153

    Article  Google Scholar 

  • Billiard S, Lopez-Villavicencio M, Hood ME, Giraud T (2013) Sex, outcrossing and mating types? Unsolved questions in fungi and beyond. J Evol Biol 25:1020–1038

    Article  Google Scholar 

  • Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ (2013) The consequence of tree pests and diseases for ecosystem services. Science 342(6160):1235773

    Article  CAS  PubMed  Google Scholar 

  • Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808

    Article  Google Scholar 

  • Brasier C, Webber J (2013) Vegetative incompatibility in the ash dieback pathogen Hymenoscyphus pseudoalbidus and its ecological implications. Fungal Ecol 6(6):501–512

    Article  Google Scholar 

  • Burdon JJ, Silk J (1997) Sources and patterns of diversity in plant pathogenic fungi. Phytopathology 87:664–669

    Article  CAS  PubMed  Google Scholar 

  • Croucher PP, Mascheretti S, Garbelotto M (2013) Combining field epidemiological information and genetic data to comprehensively reconstruct the invasion history and the microevolution of the sudden oak death agent Phytophthora ramorum (Stramenopila: Oomycetes) in California. Biol Invasions 15:2281–2297

    Article  PubMed Central  PubMed  Google Scholar 

  • Dean MD, Ballard JWO (2004) Linking phylogenetics with population genetics to reconstruct the geographic origin of a species. Mol Phylogenet Evol 32:998–1009

    Article  CAS  PubMed  Google Scholar 

  • DEFRA (2013) Chalara Management Plan. Department for Environment Food and Rural Affairs, London. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/221051/pb13936-chalara-management-plan-201303.pdf. Accessed 10 June 2014

  • Desprez-Loustau M-L, Courtecuisse R, Robin C et al (2009) Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biol Invasions 12:157–172

    Article  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  • Dutech C, Fabreguettes O, Capdevielle X, Robin C (2010) Multiple introductions of divergent genetic lineages in an invasive fungal pathogen, Cryphonectria parasitica in France. Heredity 105(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Dutech C, Barrès B, Bridier J, Robin C, Milgroom MG, Ravigné V (2012) The chestnut blight fungus world tour: successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol Ecol 21(16):3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Engesser R, Queloz V, Meier F, Kowalski T, Holdenrieder O (2009) Das Triebsterben der Esche in der Schweiz. [Ash dieback in Switzerland]. Wald und Holz 6:24–27 (in German)

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23(7):347–351

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fichtner EJ, Rizzo DM, Kirk SA, Webber JF (2012) Infectivity and sporulation potential of Phytophthora kernoviae to select North American native plants. Plant Pathol 61(2):224–233

    Article  Google Scholar 

  • Fontaine M, Austerlitz F, Giraud T et al (2013) Genetic signature of a range expansion and leap-frog event after the recent invasion of Europe by the grapevine downy mildew pathogen Plasmopara viticola. Mol Ecol 22:2771–2786

    Article  PubMed  Google Scholar 

  • Ghabrial SA, Suzuki N (2009) Viruses of plant pathogenic fungi. Annu Rev Phytopathol 47:353–384

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices. Version 2.9.3, Department of Ecology and Evolution, University of Lausanne, Switzerland. http://www2.unil.ch/popgen/softwares/

  • Gross A, Grünig CR, Queloz V, Holdenrieder O (2012) A molecular toolkit for population genetic investigations of the ash dieback pathogen Hymenoscyphus pseudoalbidus. Forest Pathol 42:252–264

    Article  Google Scholar 

  • Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014a) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15(1):5–21

    Article  CAS  PubMed  Google Scholar 

  • Gross A, Hosoya T, Queloz V (2014b) Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus. Mol Ecol 23:2943–2960

    Article  PubMed  Google Scholar 

  • Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20(3):131–138

    Article  PubMed  Google Scholar 

  • Husson C, Scala B, Caёl O, Frey P, Feau N, Ioos R, Marçais B (2011) Chalara fraxinea is an invasive pathogen in France. Eur J Plant Pathol 130:311–324

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. http://dx.doi.org/10.7717/peerj.281. http://cran.r-project.org/web/packages/poppr/

  • Kirisits T, Dämpfle L, Kräutler K (2013) Hymenoscyphus albidus is not associated with an anamorphic stage and displays slower growth than Hymenoscyphus pseudoalbidus on agar media. Forest Pathol 43(5):386–389

    Google Scholar 

  • Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23(3):482–490

    Article  CAS  PubMed  Google Scholar 

  • Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathol 36(4):264–270

    Article  Google Scholar 

  • Kowalski T, Holdenrieder O (2009) Pathogenicity of Chalara fraxinea. Forest Pathol 39:1–7

    Article  Google Scholar 

  • Kraj W, Zarek M, Kowalski T (2012) Genetic variability of Chalara fraxinea, dieback cause of European ash (Fraxinus excelsior L.). Mycol Prog 11:37–45

    Article  Google Scholar 

  • Liu YC, Milgroom MG (2007) High diversity of vegetative compatibility types in Cryphonectria parasitica in Japan and China. Mycologia 99(2):279–284

    Article  PubMed  Google Scholar 

  • Liu YC, Cortesi P, Double ML, MacDonald WL, Milgroom MG (1996) Diversity and multilocus genetic structure in populations of Cryphonectria parasitica. Phytopathology 86(12):1344–1351

    Google Scholar 

  • Lygis V, Bakys R, Gustiene A, Burokiene D, Matelis A, Vasaitis R (2014) Forest self-regeneration following clear-felling of dieback-affected Fraxinus excelsior: focus on ash. Eur J Forest Res 133:501–510

    Article  Google Scholar 

  • McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87:448–453

    Article  CAS  PubMed  Google Scholar 

  • McKinney LV, Nielsen LR, Collinge DB, Thomsen IM, Hansen JK, Kjær ED (2014) The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathol 63(3):485–499

    Article  Google Scholar 

  • Milgroom MG, Sotirovski K, Spica D et al (2008) Clonal population structure of the chestnut blight fungus in expanding ranges in Southeastern Europe. Mol Ecol 17(20):4446–4458

    Article  PubMed  Google Scholar 

  • Pautasso M, Aas G, Queloz V, Holdenrieder O (2013) European ash (Fraxinus excelsior) dieback—a conservation biology challenge. Biol Conserv 158:37–49

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prospero S, Rigling D (2012) Invasion genetics of the chestnut blight fungus Cryphonectria parasitica in Switzerland. Phytopathology 102:73–82

    Article  CAS  PubMed  Google Scholar 

  • Prospero S, Rigling D (2013) Chestnut blight. In: Nicolotti G, Gonthier P (eds) Infectious forest diseases. CAB International, Wallingford, pp 318–339

    Chapter  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 6 November 2014

  • Roques L, Garnier J, Hamel F, Klein EK (2012) Allee effect promotes diversity in traveling waves of colonization. PNAS 109(23):8828–8833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resources 8:103–106

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Santini A, Ghelardini L, De Pace C et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Schoebel CN, Stewart J, Gruenwald NJ, Rigling D, Prospero S (2014a) Population history and pathways of spread of the plant pathogen Phytophthora plurivora. PLoS ONE 9(1):e85368

    Article  PubMed Central  PubMed  Google Scholar 

  • Schoebel CN, Zoller S, Rigling D (2014b) Detection and genetic characterization of a novel mycovirus in Hymenoscyphus fraxineus, the causal agent of ash dieback. Infect Gen Evol 28:78–86

    Article  Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Timmermann V, Børja I, Hietala AM, Kirisits T, Solheim H (2011) Ash dieback: pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. EPPO Bull 41:14–20

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Westphal MI, Browne M, MacKinnon K, Noble I (2008) The link between international trade and the global distribution of invasive alien species. Biol Invasions 10:391–398

    Article  Google Scholar 

  • Xhaard C, Barrès B, Andrieux A, Bousset L, Halkett F, Frey P (2012) Disentangling the genetic origins of a plant pathogen during disease spread using an original molecular epidemiology approach. Mol Ecol 21:2383–2398

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the foresters in both countries for their help in finding diseased ash stands, as well as Hélène Blauenstein, Romina Sigrist and Donata Kinčiūtė for their help with field and laboratory work. We are also grateful to the Genetic Diversity Center of ETH Zurich for their support, and to the European Cooperation in the Field of Scientific and Technical Research (COST) Programme Action No. FP1103 ‘FRAXBACK’ for granting two Short-Term Scientific Missions (STSM’s). This study was financially supported by the Lithuanian-Swiss cooperation programme to reduce economic and social disparities within the enlarged European Union (project grant agreement no. CH-3-ŠMM-01/12). Finally, we are grateful to Silvia Dingwall for English revision of the manuscript and to the two anonymous reviewers for valuable comments on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaidotas Lygis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burokiene, D., Prospero, S., Jung, E. et al. Genetic population structure of the invasive ash dieback pathogen Hymenoscyphus fraxineus in its expanding range. Biol Invasions 17, 2743–2756 (2015). https://doi.org/10.1007/s10530-015-0911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0911-6

Keywords

Navigation