Skip to main content

Advertisement

Log in

An introduced species meets the local fauna: predatory behavior of the crab Rhithropanopeus harrisii in the Northern Baltic Sea

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Crabs are some of the most successful introduced species among marine organisms, and they can be an important structuring force in marine communities. Recently, the North American white-fingered mud crab, Rhithropanopeus harrisii, has invaded the Northern Baltic Sea. This is an area where no native crab species exist, and the addition of a novel functional species to the low species diversity of the Baltic Sea could have large community-level impacts i.e. modifying biotic interactions and/or altering ecosystem functioning. We examined the predatory behavior of introduced R. harrisii both in the laboratory and field focusing in shallow, hard bottom habitats dominated by the alga Fucus vesiculosus. In the laboratory environment, R. harrisii was an effective predator of littoral grazers, readily consuming both sessile fauna (Mytilus trossulus) and also mobile species such as isopods (Idotea balthica) and gammarid amphipods (Gammarus sp.). When studying the predation of different sized prey items, R. harrisii preyed upon small and medium sized prey of both mobile and sessile species. However, in the field experiment with the native faunal community associated with F. vesiculosus, R. harrisii negatively impacted only the abundance of the snail Theodoxus fluviatilis, possibly through indirect effects. Nevertheless, R. harrisii significantly decreased both the prey species richness and diversity but not the total number of potential prey individuals associated with F. vesiculosus. In conclusion, predatory behavior of this novel crab has the potential to impact the native macroinvertebrate littoral community, but the realized predation pressure in the field is lower than could be expected from laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bacevičius E, Gasiūnaitė ZR (2008) Two crab species-Chinese mitten crab (Eriocheir sinensis Edw.) and mud crab (Rhithropanopeus harrisii (Gould) ssp. tridentatus (Maitland) in the Lithuanian coastal waters, Baltic Sea. Transit Waters Bull 2:63–68. doi:10.1285/i1825229Xv2n2p63

    Google Scholar 

  • Bishop MJ, Byers JE (2015) Predation risk predicts use of a novel habitat. Oikos. doi:10.1111/oik.01967

    Google Scholar 

  • Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. J Exp Mar Biol Ecol 330:383–391. doi:10.1016/j.jembe.2005.12.041

    Article  Google Scholar 

  • Brousseau DJ, Filipowicz A, Baglivo JA (2001) Laboratory investigations of the effects of predator sex and size on prey selection by the Asian crab, Hemigrapsus sanguineus. J Exp Mar Biol Ecol 262:199–210. doi:10.1016/S0022-0981(01)00290-8

    Article  PubMed  Google Scholar 

  • Buck TL, Breed GA, Pennings SC, Chase ME, Zimmer M, Carefoot TH (2003) Diet choice in an omnivorous salt-marsh crab: different food types, body size, and habitat complexity. J Exp Mar Biol Ecol 292:103–116. doi:10.1016/S0022-0981(03)00146-1

    Article  Google Scholar 

  • Cohen AN, Carlton JT, Fountain MC (1995) Introduction, dispersal and potential impacts of the green crab Carcinus maenas in San Francisco Bay, California. Mar Biol 122:225–237

    Google Scholar 

  • Compton TJ, Leathwick JR, Inglis GJ (2010) Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers Distrib 16:243–255. doi:10.1111/j.1472-4642.2010.00644.x

    Article  Google Scholar 

  • Coverdale TC, Axelman EE, Brisson CP, Young EW, Altieri AH, Bertness MD (2013) New England salt marsh recovery: opportunistic colonization of an invasive species and its non-consumptive effects. PLoS ONE 8:e73823. doi:10.1371/journal.pone.0073823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox JG, Lima SL (2006) Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol Evol 21:674–680. doi:10.1016/j.tree.2006.07.011

    Article  PubMed  Google Scholar 

  • Czerniejewski P, Rybczyk A (2008) Body weight, morphometry, and diet of the mud crab, Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra estuary, Poland. Crustaceana 81:1289–1299. doi:10.1163/156854008X369483

    Article  Google Scholar 

  • Demel K (1953) Nowy gatunek w faunie Baltyku. Kosmos 2:105–106

    Google Scholar 

  • Dineen JF, Clark PF, Hines AH, Reed SA, Walton HP (2001) Life history larval description and natural history of Charybdis hellerii (Decapoda:Brachyura:Portunidae) and invasive crab in the Western Atlantic. J Crustacean Biol 21:774–805. doi:10.1651/0278-0372(2001)021[0774:LHLDAN]2.0.CO;2

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Engkvist R, Malm T, Tobiasson S (2000) Density dependent grazing effects of the isopod Idotea baltica Pallas on Fucus vesiculosus L in the Baltic Sea. Aquat Ecol 34:253–260. doi:10.1023/A:1009919526259

    Article  Google Scholar 

  • Fowler AE, Forsström T, von Numers M, Vesakoski O (2013) The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology. Aquat Invasion 8:89–96. doi:10.3391/ai.2013.8.1.10

    Article  Google Scholar 

  • Glude JB (1955) The effects of temperature and predators on the abundance of the softshell clam Mya arenaria in New England. Trans Am Fish Soc 84:13–26

    Article  Google Scholar 

  • Grosholz ED, Ruiz GM (1995) Spread and potential impact of the recently introduced European green crab Carcinus maenas, in central California. Mar Biol 122:239–247

    Google Scholar 

  • Grosholz ED, Ruiz GM, Dean CA, Shirley KA, Maron JL, Connors PG (2000) The impacts of a nonindigenous marine predator in a California Bay. Ecology 81:1206–1224. doi:10.1890/0012-9658(2000)081[1206:TIOANM]2.0.CO;2

    Article  Google Scholar 

  • Haahtela I (1965) Morphology, habitats and distribution of species of the Jaera albifrons group (Isopoda, Janiridae) in Finland. Ann Zool Fennici 2:309–314

    Google Scholar 

  • Hanks RW (1961) Chemical control of the green crab Carcinus maenas (L.). Proc Natl Shellfish Assoc 52:75–86

    Google Scholar 

  • Hegele-Drywa J, Normant M (2009) Feeding ecology of the American crab Rhithropanopeus harrisii (Crustacea, Decapoda) in the coastal waters of the Baltic Sea. Oceanologia 51:361–375. doi:10.5697/oc.51-3.361

    Article  Google Scholar 

  • Holdredge C, Bertness MD, Altieri AH (2009) Role of crab herbivory in die-off of New England salt marshes. Conserv Biol 23:672–679. doi:10.1111/j.1523-1739.2008.01137.x

    Article  PubMed  Google Scholar 

  • Hollebone AL, Hay ME (2008) An invasive crab alters interaction webs in a marine community. Biol Invasions 10:347–358. doi:10.1007/s10530-007-9134-9

    Article  Google Scholar 

  • Honkanen T, Jormalainen V (2005) Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus. Oecologia 144:196–205. doi:10.1007/s00442-005-0053-0

    Article  PubMed  Google Scholar 

  • Jacobsen HP, Stabell OB (1999) Predator-induced alarm responses in the common periwinkle, Littorina littorea: dependence on season, light conditions, and chemical labelling of predators. Mar Biol 134:551–557. doi:10.1007/s002270050570

    Article  Google Scholar 

  • Jacobsen HP, Stabell OB (2004) Source antipredator behaviour mediated by chemical cues: the role of conspecific alarm signaling and predator labeling in the avoidance response of a marine gastropod. Oikos 104:43–50. doi:10.1111/j.0030-1299.2004.12369.x

    Article  Google Scholar 

  • Juanes F (1992) Why do decapod crustaceans prefer small-sized molluscan prey? Mar Ecol Prog Ser 87:239–249

    Article  Google Scholar 

  • Juanes F, Hartwick EB (1990) Prey size selection in Dungeness crabs: the effect of claw damage. Ecology 71:744–758

    Article  Google Scholar 

  • Karhilahti A (2010) Taskurapu tarttui pyydykseen. Suomen luonto 4:12–13

    Google Scholar 

  • Kautsky H, Kautsky L, Kautsky N, Kautsky U, Lindblad C (1992) Studies on the Fucus vesiculosus community in the Baltic Sea. Acta Phytogeogr Suec 78:33–48

    Google Scholar 

  • Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638. doi:10.1038/nature00776

    Article  CAS  PubMed  Google Scholar 

  • Kimbro DL, Grosholz ED, Baukus AJ, Nesbitt NJ, Travis NM, Attoe S, Coleman-Hulbert C (2009) Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades. Oecologia 160:563–575. doi:10.1007/s00442-009-1322-0

    Article  PubMed  Google Scholar 

  • Korpinen S, Jormalainen V, Honkanen T (2007) Bottom-up and cascading top-down control of macroalgae along a depth gradient. J Exp Mar Biol Ecol 343:52–63. doi:10.1016/j.jembe.2006.11.012

    Article  Google Scholar 

  • Kotta J, Ojaveer H (2012) Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Est J Ecol 61:293–298. doi:10.3176/eco.2012.4.04

    Article  Google Scholar 

  • Ledesma ME, O’Connor NJ (2001) Habitat and diet of the non-native crab Hemigrapsus sanguineus in southeastern New England. Northeast Nat 8:63–78. doi:10.2307/3858263

    Article  Google Scholar 

  • Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63:233–246. doi:10.1159/000076784

    Article  PubMed  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invisibility. Ecology 80:1522–1536. doi:10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2

  • Lubchenco J (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am Nat 112:23–39

    Article  Google Scholar 

  • Mach ME, Bourdeau PE (2011) To flee or not to flee? Risk assessment by a marine snail in multiple cue environments. J Exp Mar Biol Ecol 409:166–171. doi:10.1016/j.jembe.2011.08.018

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd, UK

    Google Scholar 

  • Marko PB, Palmer AR (1991) Responses of a rocky shore gastropod to the effluents of predatory and non-predatory crabs: avoidance and attraction. Biol Bull 181:363–370. doi:10.2307/1542356

    Article  Google Scholar 

  • Mascaro M, Hidalgo LE, Chiappa-Carrara X, Simoes N (2003) Size-selective foraging behaviour of blue crabs, Callinectes sapidus (Rathbun), when feeding on mobile prey: active and passive components of predation. Mar Freshw Behav Physiol 36:143–159. doi:10.1080/10236240310001603224

    Article  Google Scholar 

  • Milke LM, Kennedy VS (2001) Mud crabs (Xanthidae) in Chesapeake Bay: claw characteristics and predation on epifaunal bivalves. Invertebr Biol 120:67–77

    Article  Google Scholar 

  • Naeem S, Knops JMH, Tilman D, Howe KM, Kennedy T, Gale S (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108. doi:10.1034/j.1600-0706.2000.910108.x

    Article  Google Scholar 

  • Ojeda FP, Dearborn JH (1991) Feeding ecology of benthic mobile predators: experimental analyses of their influence in rocky subtidal communities of the Gulf of Maine. J Exp Mar Biol Ecol 149:13–44

    Article  Google Scholar 

  • Paavola M, Olenin S, Leppäkoski E (2005) Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuar Coast Shelf Sci 64:738–750. doi:10.1016/j.ecss.2005.03.021

    Article  Google Scholar 

  • Roche DG, Torchin ME (2007) Established population of the North American Harris mud crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal. Aquat Invasion 2:155–161. doi:10.3391/ai.2007.2.3.1

    Article  Google Scholar 

  • Roche DG, Torchin ME, Leung B, Binning SA (2009) Localized invasion of the North American Harris mud crab, Rhithropanopeus harrisii, in the Panama Canal: implications for eradication and spread. Biol Invasions 11:983–993. doi:10.1007/s10530-008-9310-6

    Article  Google Scholar 

  • Ross DJ, Johnson CR, Hewitt CL, Ruiz GM (2004) Interaction and impacts of two introduced species on a soft-sediment marine assemblage in SE Tasmania. Mar Biol 144:747–756. doi:10.1007/s00227-003-1223-4

    Article  Google Scholar 

  • Rudnick D, Resh V (2005) Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustaceans. Freshw Biol 50:1323–1336. doi:10.1111/j.1365-2427.2005.01398.x

    Article  Google Scholar 

  • Rudnick DA, Chan V, Resh VH (2005) Morphology and impacts of the burrows of the Chinese Mitten crab, Eriocheir sinensis H. Milne Edwards (Decapoda, Grapsoidea), in south San Francisco Bay, California, U.S.A. Crustaceana 78:787–807. doi:10.1163/156854005774445500

    Article  Google Scholar 

  • Schubert K (1936) Pilumnopeus tridentatus Maitland, eine neue Rundkrabbe in Deutschland. Zool Anz 116:320–323

    Google Scholar 

  • Segerstråle SG (1944) Über die Verbreitung der Idotea-Arten im baltischen Meeresgebiet Finnlands. Comment Biol 9:1–6

    Google Scholar 

  • Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, Pintor LM, Preisser E, Rehage JS, Vonesh JR (2010) Predator-prey naiveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621. doi:10.1111/j.1600-0706.2009.18039.x

    Article  Google Scholar 

  • Silliman BR, Bertness MD (2002) A trophic cascade regulates salt marsh primary production. Proc Natl Acad Sci USA 99:10500–10505. doi:10.1073/pnas.162366599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smallegange IM, Hidding B, Eppenga JMA, van der Meer J (2008) Optimal foraging and risk of claw damage: How flexible are shore crabs in their prey size selectivity? J Exp Mar Biol Ecol 367:157–163. doi:10.1016/j.jembe.2008.09.011

    Article  Google Scholar 

  • Stachowicz JJ, Fried H, Osman RW, Whitlatch RB (2002) Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83:2575–2590

    Article  Google Scholar 

  • Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46. doi:10.1890/0012-9615(1999)069[0025:EPSIHS]2.0.CO;2

  • Strauss SY (2014) Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos 123:257–266. doi:10.1111/j.1600-0706.2013.01093.x

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474. doi:10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2

  • Trussell GC, Ewanchuk PJ, Bertness MD (2002) Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecol Lett 5:241–245. doi:10.1046/j.1461-0248.2002.00304.x

    Article  Google Scholar 

  • Turoboyski K (1973) Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus. Mar Biol 23:303–313. doi:10.1007/BF00389338

    Article  Google Scholar 

  • Van Dolah RF (1978) Factors regulating the distribution and population dynamics of the amphipod Gammarus palustris in an intertidal salt marsh community. Ecol Monogr 48:191–217

    Article  Google Scholar 

  • Vazquez D (2006) Exploring the relationship between niche breadth and invasion success. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasions biology: reciprocal approaches to nature. Springer, Berlin, pp 307–322. doi:10.1007/1-4020-4925-0_14

    Chapter  Google Scholar 

  • Walton WC, MacKinnon C, Rodriguez LF, Proctor C, Ruiz GM (2002) Effect of an invasive crab upon a marine fishery: green crab, Carcinus maenas, predation upon a venerid clam, Katelysia scalarina, in Tasmania (Australia). J Exp Mar Biol Ecol 272:171–189. doi:10.1016/S0022-0981(02)00127-2

    Article  Google Scholar 

  • Weis JS (2010) The role of behavior in the success of invasive crustaceans. Mar Freshw Behav Physiol 43:83–98. doi:10.1080/10236244.2010.480838

    Article  Google Scholar 

  • Wikström SA, Kautsky L (2007) Structure and diversity of invertebrate communities in the presence and absence of canopy-forming Fucus vesiculosus in the Baltic Sea. Estuar Coast Shelf Sci 72:168–176. doi:10.1016/j.ecss.2006.10.009

    Article  Google Scholar 

  • Wolff T (1954) Occurrence of two East American species of crabs in European waters. Nature 174:188–189

    Article  Google Scholar 

Download references

Acknowledgments

The study was financed by the Nottbäck foundation (AF), University of Turku graduate school (TF), and Suomen luonnonsuojelun säätiö. We would like to thank Henry Hellström for providing us with Rhithropanopeus harrisii in 2011. We are grateful for the comments from Veijo Jormalainen and two anonymous reviewers that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiia Forsström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsström, T., Fowler, A.E., Manninen, I. et al. An introduced species meets the local fauna: predatory behavior of the crab Rhithropanopeus harrisii in the Northern Baltic Sea. Biol Invasions 17, 2729–2741 (2015). https://doi.org/10.1007/s10530-015-0909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0909-0

Keywords

Navigation