Skip to main content

Advertisement

Log in

Adaptation in marine invasion: a genetic perspective

  • Molecular Tools
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Genetic adaptation—heritable changes that alter an organism’s performance—may facilitate invasion at several scales, but is seldom considered in predicting and managing marine invasions. However, a growing body of research—largely based on emerging genetic approaches—suggests that adaptation is possible and potentially widespread in the marine realm. Here, I review evidence for adaptation in marine invasion, considering both quantitative and genetic studies. Quantitative studies, which consider trait-based differences between populations or individuals without directly examining genetic makeup, have suggested local adaptation in several high-profile species. This implies that invasion risk may not be constant from population to population within a species, a key assumption of most invasion models. However, in many quantitative studies, the effects of heritable adaptive changes may be confounded with the effects of plasticity. Molecular approaches can help disentangle these effects, and studies at the genomic level are beginning to elucidate the specific genetic patterns and pathways underlying adaptation in invasion. While studies at this scale are currently rare in the marine invasion literature, they are likely to become increasingly prevalent—and useful—now that next-generation sequencing approaches have become tractable in non-model systems. Both traditional and emerging genetic approaches can improve our understanding of adaptation in marine invasions, and can aid managers in making accurate predictions of invasion spread and risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asif JH, Krug PJ (2012) Lineage distribution and barriers to gene flow among populations of the globally invasive marine mussel Musculista senhousia. Biol Invasions 14:1431–1444

    Google Scholar 

  • Atkins KE, Travis JMJ (2010) Local adaptation and the evolution of species’ ranges under climate change. J Theor Biol 266:449–457

    CAS  PubMed  Google Scholar 

  • Balanyá J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313:1773–1775

    PubMed  Google Scholar 

  • Balanyá J, Huey RB, Gilchrist GW, Serra L (2009) The chromosomal polymorphism of Drosophila subobscura: a microevolutionary weapon to monitor global change. Heredity 103:364–367

    PubMed  Google Scholar 

  • Bastrop R, Jürss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Mol Biol Evol 15:97–103

    CAS  PubMed  Google Scholar 

  • Blackburn TM (2008) Using aliens to explore how our planet works. Proc Natl Acad Sci USA 105:9–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blakeslee AMH, McKenzie CH, Darling JA, Byers JE, Pringle JM, Roman J (2010) A hitchhiker’s guide to the Maritimes: anthropogenic transport facilitates long-distance dispersal of an invasive marine crab to Newfoundland. Divers Distrib 16:879–891

    Google Scholar 

  • Braby CE, Somero GN (2006) Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). J Exp Biol 209:2554–2566

    PubMed  Google Scholar 

  • Bradbury IR, Hubert S, Higgins B et al (2010) Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to temperature. Proc R Soc B 277:3725–3734

    PubMed Central  PubMed  Google Scholar 

  • Carlton JT, Cohen AN (2003) Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs Carcinus maenas and Carcinus aestuarii. J Biogeogr 30:1809–1820

    Google Scholar 

  • Carrière Y, Crowder DW, Tabashnik BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Evol Appl 3:561–573

    PubMed Central  PubMed  Google Scholar 

  • Chown SL, Slabber S, McGeoch MA, Janion C, Leinaas HP (2007) Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc R Soc B 274:2531–2537

    PubMed Central  PubMed  Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Climate Res 43:3–15

    Google Scholar 

  • Colosimo PF, Hosemann KE, Balabhadra S et al (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:1928–1933

    CAS  PubMed  Google Scholar 

  • Compton TJ, Leathwick JR, Inglis GJ (2010) Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers Distrib 16:243–255

    Google Scholar 

  • Conover DO, Clarke LM, Munch SB, Wagner GN (2006) Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J Fish Biol 69:21–47

    Google Scholar 

  • Corander J, Majander KK, Cheng L, Merilä J (2013) High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol 22:2931–2940

    CAS  PubMed  Google Scholar 

  • Crooks JA, Chang AL, Ruiz GM (2010) Aquatic pollution increases the relative success of invasive species. Biol Invasions 13:165–176

    Google Scholar 

  • Daka ER, Hawkins SJ (2004) Tolerance to heavy metals in Littorina saxatilis from a metal contaminated estuary in the Isle of Man. J Mar Biol Assoc UK 84:393–400

    CAS  Google Scholar 

  • Darling JA, Bagley MJ, Roman J, Tepolt CK, Geller JB (2008) Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol 17:4992–5007

    CAS  PubMed  Google Scholar 

  • Davidson SK, Haygood MG (1999) Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont “Candidatus Endobugula sertula”. Biol Bull 196:273–280

    CAS  PubMed  Google Scholar 

  • De Wit P, Palumbi SR (2012) Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol Ecol 22:2884–2897

    PubMed  Google Scholar 

  • De Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Therkildsen NO, Morikawa M, Palumbi SR (2012) The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour 12:1058–1067

    PubMed  Google Scholar 

  • Decker MB, Breitburg DL, Marcus NH (2003) Geographical differences in behavioral responses to hypoxia: local adaptation to an anthropogenic stressor? Ecol Appl 13:1104–1109

    Google Scholar 

  • deRivera CE, Ruiz GM, Hines AH, Jivoff P (2005) Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology 86:3364–3376

    Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dittman DE (1997) Latitudinal compensation in oyster ciliary activity. Funct Ecol 11:573–578

    Google Scholar 

  • Dittman DE, Ford SE, Haskin HH (1998) Growth patterns in oysters, Crassostrea virginica, from different estuaries. Mar Biol 132:461–469

    Google Scholar 

  • Dowd WW, Somero GN (2013) Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater. J Exp Biol 216:502–514

    PubMed  Google Scholar 

  • Downes S, Mahon R (2012) Evolution, ecology and management of resistance in Helicoverpa spp. to Bt cotton in Australia. J Invertebr Pathol 110:281–286

    PubMed  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol S 40:677–697

    Google Scholar 

  • Ellegren H (2008) Comparative genomics and the study of evolution by natural selection. Mol Ecol 17:4586–4596

    PubMed  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63

    PubMed  Google Scholar 

  • Fields PA, Rudomin EL, Somero GN (2006) Temperature sensitivities of cytosolic malate dehydrogenases from native and invasive species of marine mussels (genus Mytilus): sequence-function linkages and correlations with biogeographic distribution. J Exp Biol 209:656–667

    CAS  PubMed  Google Scholar 

  • Folino-Rorem NC, Darling JA, D’Ausilio CA (2009) Genetic analysis reveals multiple cryptic invasive species of the hydrozoan genus Cordylophora. Biol Invasions 11:1869–1882

    Google Scholar 

  • Galindo J, Morán P, Rolán-Alvarez E (2009) Comparing geographical genetic differentiation between candidate and noncandidate loci for adaptation strengthens support for parallel ecological divergence in the marine snail Littorina saxatilis. Mol Ecol 18:919–930

    CAS  PubMed  Google Scholar 

  • Galindo J, Grahame JW, Butlin RK (2010) An EST-based genome scan using 454 sequencing in the marine snail Littorina saxatilis. J Evol Biol 23:2004–2016

    CAS  PubMed  Google Scholar 

  • Galletly BC, Blows MW, Marshall DJ (2007) Genetic mechanisms of pollution resistance in a marine invertebrate. Ecol Appl 17:2290–2297

    PubMed  Google Scholar 

  • Gassmann AJ (2012) Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field. J Invertebr Pathol 110:287–293

    PubMed  Google Scholar 

  • Geller JB, Carlton JT, Powers DA (1994) PCR-based detection of mtDNA haplotypes of native and invading mussels on the northeastern Pacific coast: latitudinal pattern of invasion. Mar Biol 119:243–249

    CAS  Google Scholar 

  • Geller J, Sotka E, Kado R, Palumbi SR, Schwindt E (2008) Sources of invasions of a northeastern Pacific acorn barnacle, Balanus glandula, in Japan and Argentina. Mar Ecol Prog Ser 358:211–218

    Google Scholar 

  • Geller JB, Darling JA, Carlton JT (2010) Genetic perspectives on marine biological invasions. Annu Rev Mar Sci 2:367–393

    Google Scholar 

  • Grahame JW, Wilding CS, Butlin RK (2006) Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 60:268–278

    CAS  PubMed  Google Scholar 

  • Grosholz E (2001) Small spatial-scale differentiation among populations of an introduced colonial invertebrate. Oecologia 129:58–64

    Google Scholar 

  • Hamann A, Aitken SN (2013) Conservation planning under climate change: accounting for adaptive potential and migration capacity in species distribution models. Divers Distrib 19:268–280

    Google Scholar 

  • Hastings A, Cuddington K, Davies KF et al (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101

    Google Scholar 

  • Hendry AP (2013) Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity 111:456–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hess JE, Campbell NR, Close DA, Docker MF, Narum SR (2013) Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol 22:2898–2916

    CAS  PubMed  Google Scholar 

  • Hewitt CL, Campbell ML (2007) Mechanisms for the prevention of marine bioinvasions for better biosecurity. Mar Pollut Bull 55:395–401

    CAS  PubMed  Google Scholar 

  • Hill MP, Chown SL, Hoffmann AA (2013) A predicted niche shift corresponds with increased thermal resistance in an invasive mite, Halotydeus destructor. Global Ecol Biogeogr 22:942–951

    Google Scholar 

  • Hofmann GE, Somero GN (1996) Interspecific variation in thermal denaturation of proteins in the congeneric mussels Mytilus trossulus and M. galloprovincialis: evidence from the heat-shock response and protein ubiquitination. Mar Biol 126:65–75

    CAS  Google Scholar 

  • Janson K (1982) Genetic and environmental effects on the growth rate of Littorina saxatilis. Mar Biol 69:73–78

    Google Scholar 

  • Janson K (1983) Selection and migration in two distinct phenotypes of Littorina saxatilis in Sweden. Oecologia 59:58–61

    CAS  PubMed  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Google Scholar 

  • Johannesson B, Johannesson K (1996) Population differences in behaviour and morphology in the snail Littorina saxatilis: phenotypic plasticity or genetic differentiation? J Zool 240:475–493

    Google Scholar 

  • Johannesson K, Rolán-Alvarez E, Erlandsson J (1997) Growth rate differences between upper and lower shore ecotypes of the marine snail Littorina saxatilis (Olivi) (Gastropoda). Biol J Linn Soc 61:267–279

    Google Scholar 

  • Jones FC, Grabherr MG, Chan YF et al (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    PubMed  Google Scholar 

  • Kirk H, Dorn S, Mazzi D (2013) Molecular genetics and genomics generate new insights into invertebrate pest invasions. Evol Appl 6:842–856

    CAS  Google Scholar 

  • Koehn RK, Newell RIE, Immermann F (1980) Maintenance of an aminopeptidase allele cline by natural selection. Proc Natl Acad Sci USA 77:5385–5389

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kruse I, Hare MP (2007) Genetic diversity and expanding nonindigenous range of the rhizocephalan Loxothylacus panopaei parasitizing mud crabs in the western north Atlantic. J Parasitol 93:575–582

    CAS  PubMed  Google Scholar 

  • Kruse I, Hare MP, Hines AH (2011) Genetic relationships of the marine invasive crab parasite Loxothylacus panopaei: an analysis of DNA sequence variation, host specificity, and distributional range. Biol Invasions 14:701–715

    Google Scholar 

  • Kuo ESL, Sanford E (2009) Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Mar Ecol Prog Ser 388:137–146

    Google Scholar 

  • Lamichhaney S, Martinez Barrio A, Rafati N et al (2012) Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc Natl Acad Sci USA 109:19345–19350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lankau R, Jørgensen PS, Harris DJ, Sih A (2011) Incorporating evolutionary principles into environmental management and policy. Evol Appl 4:315–325

    PubMed Central  PubMed  Google Scholar 

  • Laughlin RJ, French W (1989) Differences in responses to factorial combinations of temperature and salinity by zoeae from two geographically isolated populations of the mud crab Rhithropanopeus harrisii. Mar Biol 102:387–395

    Google Scholar 

  • Le Roux J, Wieczorek A (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17

    Google Scholar 

  • Lee CE (1999) Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53:1423–1434

    Google Scholar 

  • Lee CE, Bell MA (1999) Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol Evol 14:284–288

    CAS  PubMed  Google Scholar 

  • Lee CE, Kiergaard M, Gelembiuk GW, Eads BD, Posavi M (2011) Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65:2229–2244

    CAS  PubMed  Google Scholar 

  • Lee CE, Posavi M, Charmantier G (2012) Rapid evolution of body fluid regulation following independent invasions into freshwater habitats. J Evol Biol 25:625–633

    PubMed  Google Scholar 

  • Lenz M, da Gama BAP, Gerner NV et al (2011) Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: results from a globally replicated study. Environ Res 111:943–952

    CAS  PubMed  Google Scholar 

  • Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden R, Carvalho GR, Bekkevold D (2012) Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol 21:3686–3703

    CAS  PubMed  Google Scholar 

  • Lockwood BL, Somero GN (2011) Invasive and native blue mussels (genus Mytilus) on the California coast: the role of physiology in a biological invasion. J Exp Mar Biol Ecol 400:167–174

    Google Scholar 

  • Lockwood BL, Somero GN (2012) Functional determinants of temperature adaptation in enzymes of cold- versus warm-adapted mussels (genus Mytilus). Mol Biol Evol 29:3061–3070

    CAS  PubMed  Google Scholar 

  • Lockwood BL, Sanders JG, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exp Biol 213:3548

    CAS  PubMed  Google Scholar 

  • Lodge DM, Williams S, MacIsaac HJ et al (2006) Biological invasions: recommendations for US policy and management. Ecol Appl 16:2035–2054

    PubMed  Google Scholar 

  • Mackie JA, Darling JA, Geller JB (2012) Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species. Sci Rep 2:1–10

    Google Scholar 

  • McDonald JH, Koehn RK (1988) The mussels Mytilus galloprovincialis and M. trossulus on the Pacific coast of North America. Mar Biol 99:111–118

    Google Scholar 

  • McEwan JR, Vamosi JC, Rogers SM (2013) Natural selection and neutral evolution jointly drive population divergence between alpine and lowland ecotypes of the allopolyploid plant Anemone multifida (Ranunculaceae). PLoS ONE 8:e68889

    Google Scholar 

  • McKenzie LA, Brooks R, Johnston EL (2011) Heritable pollution tolerance in a marine invader. Environ Res 111:926–932

    CAS  PubMed  Google Scholar 

  • McKenzie LA, Johnston EL, Brooks R (2012) Using clones and copper to resolve the genetic architecture of metal tolerance in a marine invader. Ecol Evol 2:1319–1329

    PubMed Central  PubMed  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Google Scholar 

  • Monro K, Poore AGB (2009) The evolvability of growth form in a clonal seaweed. Evolution 63:3147–3157

    PubMed  Google Scholar 

  • Morey A, Venette R, Hutchison W (2013) Could natural selection change the geographic range limits of light brown apple moth (Lepidoptera, Tortricidae) in North America? NeoBiota 18:151–156

    Google Scholar 

  • Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151

    CAS  PubMed  Google Scholar 

  • Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D (2009a) Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol 18:3128–3150

    PubMed  Google Scholar 

  • Nielsen EE, Hemmer-Hansen J, Poulsen NA et al (2009b) Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol Biol 9:276

    PubMed Central  PubMed  Google Scholar 

  • Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18:375–402

    PubMed  Google Scholar 

  • O’Neill GA, Hamann A, Wang T (2008) Accounting for population variation improves estimates of the impact of climate change on species’ growth and distribution. J Appl Ecol 45:1040–1049

    Google Scholar 

  • Ometto L, Cestaro A, Ramasamy S et al (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757

    PubMed Central  PubMed  Google Scholar 

  • Pardo L, Johnson L (2005) Explaining variation in life-history traits: growth rate, size, and fecundity in a marine snail across an environmental gradient lacking predators. Mar Ecol Prog Ser 296:229–239

    Google Scholar 

  • Paul-Pont I, de Montaudouin X, Gonzalez P, Soudant P, Baudrimont M (2010) How life history contributes to stress response in the Manila clam Ruditapes philippinarum. Environ Sci Pollut R 17:987–998

    CAS  Google Scholar 

  • Pertoldi C, Bach L (2007) Evolutionary aspects of climate-induced changes and the need for multidisciplinarity. J Therm Biol 32:118–124

    Google Scholar 

  • Pespeni MH, Palumbi SR (2013) Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol Ecol 22:3580–3597

    CAS  PubMed  Google Scholar 

  • Pespeni MH, Oliver TA, Manier MK, Palumbi SR (2010) Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays. Genome Biol 11:R44

    PubMed Central  PubMed  Google Scholar 

  • Pespeni MH, Chan F, Menge BE, Palumbi SR (2013) Signs of adaptation to local pH conditions across an environmental mosaic in the California Current ecosystem. Integr Comp Biol 53:857–870

    CAS  PubMed  Google Scholar 

  • Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803

    CAS  PubMed  Google Scholar 

  • Piola RF, Johnston EL (2006) Differential tolerance to metals among populations of the introduced bryozoan Bugula neritina. Mar Biol 148:997–1010

    Google Scholar 

  • Piola RF, Dafforn KA, Johnston EL (2009) The influence of antifouling practices on marine invasions. Biofouling 25:633–644

    CAS  PubMed  Google Scholar 

  • Preisser EL, Elkinton JS, Abell K (2008) Evolution of increased cold tolerance during range expansion of the elongate hemlock scale Fiorinia externa Ferris (Hemiptera: Diaspididae). Ecol Entomol 33:709–715

    Google Scholar 

  • Pringle JM, Blakeslee AMH, Byers JE, Roman J (2011) Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range. Proc Natl Acad Sci USA 108:15288–15293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rawson PD, Agrawal V, Hilbish TJ (1999) Hybridization between the blue mussels Mytilus galloprovincialis and M. trossulus along the Pacific coast of North America: evidence for limited introgression. Mar Biol 134:201–212

    Google Scholar 

  • Riquet F, Daguin-Thiébaut C, Ballenghien M, Bierne N, Viard F (2013) Contrasting patterns of genome-wide polymorphism in the native and invasive range of the marine mollusc Crepidula fornicata. Mol Ecol 22:1003–1018

    CAS  PubMed  Google Scholar 

  • Rohfritsch A, Bierne N, Boudry P, Heurtebise S, Cornette F, Lapegue S (2013) Population genomics shed light on the demographic and adaptive histories of European invasion in the Pacific oyster, Crassostrea gigas. Evol Appl 6:1064–1078

    PubMed Central  PubMed  Google Scholar 

  • Rolán-Alvarez E, Johannesson K, Erlandsson J (1997) The maintenance of a cline in the marine snail Littorina saxatilis: the role of home site advantage and hybrid fitness. Evolution 51:1838–1847

    Google Scholar 

  • Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc B 273:2453–2459

    PubMed Central  PubMed  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    PubMed  Google Scholar 

  • Roman J, Palumbi SR (2004) A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol Ecol 13:2891–2898

    CAS  PubMed  Google Scholar 

  • Romano JA, Rittschof D, McClellan-Green PD, Holm ER (2010) Variation in toxicity of copper pyrithione among populations and families of the barnacle, Balanus amphitrite. Biofouling 26:341–347

    PubMed  Google Scholar 

  • Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535

    Google Scholar 

  • Schneider KR (2008) Heat stress in the intertidal: comparing survival and growth of an invasive and native mussel under a variety of thermal conditions. Biol Bull 215:253–264

    PubMed  Google Scholar 

  • Sgrò CM, Overgaard J, Kristensen TN, Mitchell KA, Cockerell FE, Hoffmann AA (2010) A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. J Evol Biol 23:2484–2493

    PubMed  Google Scholar 

  • Sokolova IM, Pörtner HO (2001) Temperature effects on key metabolic enzymes in Littorina saxatilis and L. obtusata from different latitudes and shore levels. Mar Biol 139:113–126

    CAS  Google Scholar 

  • Sorte CJB, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecol Biogeogr 19:303–316

    Google Scholar 

  • Sorte CJB, Jones SJ, Miller LP (2011) Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J Exp Mar Biol Ecol 400:209–217

    Google Scholar 

  • Sorte CJB, Ibáñez I, Blumenthal DM et al (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270

    PubMed  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci USA 99:15497–15500

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stillman JH, Colbourne JK, Lee CE et al (2008) Recent advances in crustacean genomics. Integr Comp Biol 48:852–868

    PubMed  Google Scholar 

  • Suchanek TH, Geller JB, Kreiser BR, Mitton JB (1997) Zoogeographic distributions of the sibling species Mytilus galloprovincialis and M. trossulus (Bivalvia: Mytilidae) and their hybrids in the north Pacific. Biol Bull 193:187–194

    Google Scholar 

  • Tepolt CK, Somero GN (2014) Master of all trades: thermal acclimation and adaptation of cardiac function in a broadly-distributed marine invasive species, the European green crab, Carcinus maenas. J Exp Biol 217:1129–1138

    PubMed  Google Scholar 

  • Thrall PH, Oakeshott JG, Fitt G et al (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 4:200–215

    PubMed Central  PubMed  Google Scholar 

  • Van Doorslaer W, Vanoverbeke J, Duvivier C et al (2009) Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Global Change Biol 15:3046–3055

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    PubMed Central  CAS  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, “invasive traits” and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580

    Google Scholar 

  • Wood HM, Grahame JW, Humphray S, Rogers J, Butlin RK (2008) Sequence differentiation in regions identified by a genome scan for local adaptation. Mol Ecol 17:3123–3135

    CAS  PubMed  Google Scholar 

  • Yao C-L, Somero GN (2012) The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane integrity, apoptosis and signaling pathways. J Exp Biol 215:4267–4277

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I wish to thank Drs. Steve Palumbi and George Somero and two anonymous reviewers for their insightful comments on previous versions of this manuscript, and Drs. Alison Haupt and John Darling for their helpful overview of some of the tables. I was supported by a fellowship from the Stanford Center for Computational, Evolutionary, and Human Genomics; I greatly appreciate their support. The publication of this paper is supported by CONISMA, the Italian National Interuniversity Consortium for Marine Sciences, which received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) for the project VECTORS (http://www.marine-vectors.eu). This paper stems from the International workshop MOLTOOLS (Molecular Tools for Monitoring Marine Invasive Species), held in Lecce, Italy, in September 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Tepolt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepolt, C.K. Adaptation in marine invasion: a genetic perspective. Biol Invasions 17, 887–903 (2015). https://doi.org/10.1007/s10530-014-0825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0825-8

Keywords

Navigation