Skip to main content

Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions

  • Chapter
  • First Online:
Population Genomics: Marine Organisms

Abstract

Genomic approaches are increasingly being used to study biological invasions. Here, we first analyse how high-throughput sequencing has aided our understanding of the mechanisms associated with biological invasions. These include the transport of propagules to pre-invaded areas, an exploration of the consequences of hybridisation during range expansions, and the pre- and post-invasion adaptation of colonising populations. We then explore how contemporary genomic methods have been used to probe and monitor the spread of non-indigenous species. More specifically, we focus on the detection of species richness from environmental samples, measures of quantitative traits that may promote invasiveness, analysis of rapid adaptation, and the study of phenotypic plasticity. Finally, we look to the future, exploring how genomic approaches will assist future biodiversity conservationists in their efforts to mitigate the spread and effects of biological invasions. Ultimately, although the use of genomic tools to study non-indigenous species has so far been rather limited, studies to date indicate that genomic tools offer unparalleled research opportunities to continually improve our understanding of marine biological invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian-Kalchhauser I, Burkhardt-Holm P. An eDNA assay to monitor a globally invasive fish species from flowing freshwater. PLoS One. 2016;11:e0147558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albins MA, Hixon MA. Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser. 2008;367:233–8.

    Article  Google Scholar 

  • Allendorf FW, Lundquist LL. Introduction: population biology, evolution, and control of invasive species. Conserv Biol. 2003;17:24–30.

    Article  Google Scholar 

  • Amberg JJ, Grace McCalla S, Monroe E, Lance R, Baerwaldt K, Gaikowski MP. Improving efficiency and reliability of environmental DNA analysis for silver carp. J Great Lakes Res. 2015;41:367–73.

    Article  CAS  Google Scholar 

  • Andruszkiewicz EA, Sassoubre LM, Boehm AB. Persistence of marine fish environmental DNA and the influence of sunlight. PLoS One. 2017;12:e0185043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arcella TE, Perry WL, Lodge DM, Feder JL. The role of hybridization in a species invasion and extirpation of resident Fauna: hybrid vigor and breakdown in the rusty crayfish, Orconectes rusticus. J Crustac Biol. 2014;34:157–64.

    Article  Google Scholar 

  • Ardura A, Zaiko A, Martinez JL, Samulioviene A, Semenova A, Garcia-Vazquez E. eDNA and specific primers for early detection of invasive species – a case study on the bivalve Rangia cuneata, currently spreading in Europe. Mar Environ Res. 2015a;112(Part B):48–55.

    Article  CAS  PubMed  Google Scholar 

  • Ardura A, Zaiko A, Martinez JL, Samuiloviene A, Borrell Y, Garcia-Vazquez E. Environmental DNA evidence of transfer of North Sea molluscs across tropical waters through ballast water. J Moll Stud. 2015b;81:495–501.

    Article  Google Scholar 

  • Ardura A, Zaiko A, Moran P, Planes S, Garcia-Vazquez E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep. 2017;7:42193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubin-Horth N, Renn SCP. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol. 2009;18:3763–80.

    Article  CAS  PubMed  Google Scholar 

  • Azzurro E, Stancanelli B, Di Martino V, Bariche M. Range expansion of the common lionfish Pterois miles (Bennett, 1828) in the Mediterranean Sea: an unwanted new guest for Italian waters. Bioinvasions Rec. 2017;6:95–8.

    Article  Google Scholar 

  • Baker H, Stebbins G. The genetics of colonizing species. New York: Academic Press; 1965.

    Google Scholar 

  • Ballew NG, Bacheler NM, Kellison GT, Schueller AM. Invasive lionfish reduce native fish abundance on a regional scale. Sci Rep. 2016;6:32169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bariche M, Kleitou P, Kalogirou S, Bernardi G. Genetics reveal the identity and origin of the lionfish invasion in the Mediterranean Sea. Sci Rep. 2017;7:6782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnes MA, Turner CR. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. 2016;17:1–17.

    Article  CAS  Google Scholar 

  • Barrett SCH. Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol. 2015;24:1927–41.

    Article  PubMed  Google Scholar 

  • Barrett SCH, Colautti RI, Dlugosch KM, Rieseberg LH. Invasion genetics: the Baker and Stebbins Legacy. Hoboken, NJ: Wiley; 2016.

    Book  Google Scholar 

  • Bax NJ, Hayes K, Marshall A, Parry D, Thresher R. Man-made marinas as sheltered islands for alien marine organisms: establishment and eradication of an alien invasive marine species. In: Veitch CR, Clout MN, editors. Turning the tide: the eradication of invasive species. Gland, Switzerland: IUCN SSC Invasive Species Specialist Group; 2002. p. 26–39.

    Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell MA, Travis MP. Hybridization, transgressive segregation, genetic covariation, and adaptive radiation. Trends Ecol Evol. 2005;20:358–61.

    Article  PubMed  Google Scholar 

  • Bergman PS, Schumer G, Blankenship S, Campbell E. Detection of adult green sturgeon using environmental DNA analysis. PLoS One. 2016;11:e0153500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardi G, Azzurro E, Golani D, Miller MR. Genomic signatures of rapid adaptive evolution in the bluespotted cornetfish, a Mediterranean Lessepsian invader. Mol Ecol. 2016;25:3384–96.

    Article  CAS  PubMed  Google Scholar 

  • Betancur RR, Hines A, Acero PA, Ortí G, Wilbur AE, Freshwater DW. Reconstructing the lionfish invasion: insights into greater Caribbean biogeography. J Biogeogr. 2011;38:1281–93.

    Article  Google Scholar 

  • Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosik V, Wilson JR, Richardson DM. A proposed unified framework for biological invasions. Trends Ecol Evol. 2011;26:333–9.

    Article  PubMed  Google Scholar 

  • Blossey B, Notzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol. 1995;83:887–9.

    Article  Google Scholar 

  • Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don’t know about invasion genetics. Mol Ecol. 2015;24:2277–97.

    Article  PubMed  Google Scholar 

  • Boissin E, Hurley B, Wingfield MJ, Vasaitis R, Stenlid J, Davis C, de Groot P, Ahumada R, Carnegie A, Goldarazena A, Klasmer P, Wermelinger B, Slippers B. Retracing the routes of introduction of invasive species: the case of the Sirex noctilio woodwasp. Mol Ecol. 2012;21:5728–44.

    Article  CAS  PubMed  Google Scholar 

  • Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, Denham T, Petraglia MD. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci. 2016;113:6388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol Lett. 2008;11:106–15.

    PubMed  Google Scholar 

  • Bouchemousse S, Liautard-Haag C, Bierne N, Viard F. Distinguishing contemporary hybridization from past introgression with postgenomic ancestry-informative SNPs in strongly differentiated Ciona species. Mol Ecol. 2016a;25:5527–42.

    Article  PubMed  Google Scholar 

  • Bouchemousse S, Bishop JDD, Viard F. Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea). Sci Rep. 2016b;6:24875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bragg JG, Supple MA, Andrew RL, Borevitz JO. Genomic variation across landscapes: insights and applications. New Phytol. 2015;207:953–67.

    Article  PubMed  Google Scholar 

  • Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  • Brown PMJ, Thomas CE, Lombaert E, Jeffries DL, Estoup A, Lawson Handley L-J. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. BioControl. 2011;56:623.

    Article  Google Scholar 

  • Butterfield JSS, Díaz-Ferguson E, Silliman BR, Saunders JW, Buddo D, Mignucci-Giannoni AA, Searle L, Allen AC, Hunter ME. Wide-ranging phylogeographic structure of invasive red lionfish in the western Atlantic and greater Caribbean. Mar Biol. 2015;162:773–81.

    Article  Google Scholar 

  • Carlson SM, Cunningham CJ, Westley PAH. Evolutionary rescue in a changing world. Trends Ecol Evol. 2014;29:521–30.

    Article  PubMed  Google Scholar 

  • Carlton JT. The scale and ecological consequences of biological invasions in the world’s oceans. In: Sandlund O, Schei P, Viken Å, editors. Invasive species and biodiversity management. Dordrecht: Kluwer; 1999. p. 195–212.

    Chapter  Google Scholar 

  • Carroll SP. Natives adapting to invasive species: ecology, genes, and the sustainability of conservation. Ecol Res. 2007;22:892–901.

    Article  Google Scholar 

  • Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol. 2013;22:1503–17.

    Article  CAS  PubMed  Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.

    Article  Google Scholar 

  • Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. Biological invasions, climate change and genomics. Evol Appl. 2015;8:23–46.

    Article  PubMed  Google Scholar 

  • Clark GF, Johnston EL. Propagule pressure and disturbance interact to overcome biotic resistance of marine invertebrate communities. Oikos. 2009;118:1679–86.

    Article  Google Scholar 

  • Colautti RI, Barrett SCH. Rapid adaptation to climate facilitates range expansion of an introduced plant. Science. 2013;342:364–6.

    Article  CAS  PubMed  Google Scholar 

  • Colautti RI, MacIsaac HJ. A neutral terminology to define “invasive” species. Divers Distrib. 2004;10:135–41.

    Article  Google Scholar 

  • Colautti RI, Manca M, Viljanen M, Ketelaars HAM, Bürgi H, Macisaac HJ, Heath DD. Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Mol Ecol. 2005;14:1869–79.

    Article  CAS  PubMed  Google Scholar 

  • Collins RA, Armstrong KF, Holyoake AJ, Keeling S. Something in the water: biosecurity monitoring of ornamental fish imports using environmental DNA. Biol Invasions. 2013;15:1209–15.

    Article  Google Scholar 

  • Corbett JJ, Winebrake J. The impacts of globalisation on international maritime transport activity. Global forum on transport and environment in a globalising world. Guadalajara, Mexico: OECD; 2008.

    Google Scholar 

  • Cordero D, Delgado M, Liu B, Ruesink J, Saavedra C. Population genetics of the Manila clam (Ruditapes philippinarum) introduced in North America and Europe. Sci Rep. 2017;7:39745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne JA, Orr HA. Speciation. Sunderland, MA: Sinauer Associates; 2004.

    Google Scholar 

  • Cristescu ME. Genetic reconstructions of invasion history. Mol Ecol. 2015;24:2212–25.

    Article  PubMed  Google Scholar 

  • Crooks JA, Soulé ME, Sandlund O. Lag times in population explosions of invasive species: causes and implications. In: Sandlund O, Schei P, Viken A, editors. Invasive species and biodiversity management. Population and Community Biology Series. 1st ed. vol 24. Netherlands: Kluwer Academic Publishers; 1999. pp. 103–25.

    Chapter  Google Scholar 

  • Curnutt JL. Host-area specific climatic-matching. Biol Conserv. 2000;94:341–51.

    Article  Google Scholar 

  • da Fonseca RR, Albrechtsen A, Themudo GE, Ramos-Madrigal J, Sibbesen JA, Maretty L, Zepeda-Mendoza ML, Campos PF, Heller R, Pereira RJ. Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics. 2016;30:3–13.

    Article  PubMed  Google Scholar 

  • Darling JA, Frederick RM. Nucleic acids-based tools for ballast water surveillance, monitoring, and research. J Sea Res. 2017;33:43–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett. 2011;14:419–31.

    Article  PubMed  Google Scholar 

  • Davy CM, Kidd AG, Wilson CC. Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS One. 2015;10:e0130965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deiner K, Altermatt F. Transport distance of invertebrate environmental DNA in a Natural River. PLoS One. 2014;9:e88786A.

    Article  CAS  Google Scholar 

  • Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol. 2012;49:953–9.

    Article  Google Scholar 

  • de Vicente MC, Tanksley SD. QTL analysis of Transgressive segregation in an interspecific tomato cross. Genetics. 1993;134:585–96.

    Article  Google Scholar 

  • Dlugosch KM, Parker IM. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol. 2008;17:431–49.

    Article  CAS  PubMed  Google Scholar 

  • Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD. The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol. 2015;24:2095–111.

    Article  PubMed  Google Scholar 

  • Dong K, Yao N, Pu Y, He X, Zhao Q, Luan Y, Guan W, Rao S, Ma Y. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One. 2014;9:e110520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dougherty MM, Larson ER, Renshaw MA, Gantz CA, Egan SP, Erickson DM, Lodge DM. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. J Appl Ecol. 2016;53:722–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake JM. Heterosis, the catapult effect and establishment success of a colonizing bird. Biol Lett. 2006;2:304–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake JM, Lodge DM. Hull fouling is a risk factor for intercontinental species exchange in aquatic ecosystems. Aquat Invasions. 2007;2:121–31.

    Article  Google Scholar 

  • Dukes JS. Responses of invasive species to a changing climate and atmosphere. In: Richardson DM, editor. Fifty years of invasion ecology: the legacy of Charles Elton. 1st ed. Oxford: Wiley-Blackwell; 2010.

    Google Scholar 

  • Edmands S, Northrup SL, Hwang AS. Maladapted gene complexes within populations of the intertidal copepod Tigriops californicus. Evolution. 2009;63:2184–92.

    Article  CAS  PubMed  Google Scholar 

  • Egan SP, Grey E, Olds B, Feder JL, Ruggiero ST, Tanner CE, Lodge DM. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy. Environ Sci Technol. 2015;49:4113–21.

    Article  CAS  PubMed  Google Scholar 

  • Ehrenfeld JG. Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst. 2010;41:59–80.

    Article  Google Scholar 

  • Ekblom R, Galindo J. Applications of next-generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb). 2011;107:1–15.

    Article  CAS  Google Scholar 

  • Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci. 2000;97:7043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elst EM, Acharya KP, Dar PA, Reshi ZA, Tufto J, Nijs I, Graae BJ. Pre-adaptation or genetic shift after introduction in the invasive species Impatiens glandulifera? Acta Oecol. 2016;70:60–6.

    Article  Google Scholar 

  • Estoup A, Guillemaud T. Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol. 2010;19:4113–30.

    Article  PubMed  Google Scholar 

  • Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. Elife. 2014;3:e03401.

    Article  PubMed  PubMed Central  Google Scholar 

  • European Bioinformatics Institute. EMBL-EBI annual scientific report EMBL–EBI, 2013. 2012.

    Google Scholar 

  • Excoffier L, Ray N. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol. 2008;23:347–51.

    Article  PubMed  Google Scholar 

  • Ferreira CEL, Luiz OJ, Floeter SR, Lucena MB, Barbosa MC, Rocha CR, Rocha LA. First record of invasive lionfish (Pterois volitans) for the Brazilian coast. PLoS One. 2015;10:e0123002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P. Species detection using environmental DNA from water samples. Biol Lett. 2008;4:423–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ficetola GF, Taberlet P, Coissac E. How to limit false positives in environmental DNA and metabarcoding? Mol Ecol Resour. 2016;16:604–7.

    Article  CAS  PubMed  Google Scholar 

  • Fisher MA, Oleksiak MF. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics. 2007;8:108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Florida Fish and Wildlife Conservation Commission (2017) Lionfish – Pterois volitans. http://myfwc.com/wildlifehabitats/nonnatives/marine-species/lionfish/.

  • Foote AD, Thomsen PF, Sveegaard S, Wahlberg M, Kielgast J, Kyhn LA, Salling AB, Galatius A, Orlando L, Gilbert MT. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS One. 2012;7:e41781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsström T, Vasemägi A. Can environmental DNA (eDNA) be used for detection and monitoring of introduced crab species in the Baltic Sea? Mar Pollut Bull. 2016;109:350–5.

    Article  PubMed  CAS  Google Scholar 

  • Frey M, Simard N, Robichaud D, Martin J, Therriault T. Fouling around: vessel sea-chests as a vector for the introduction and spread of aquatic invasive species. Manag Biol Invasions. 2014;5:21–30.

    Article  Google Scholar 

  • Furlan EM, Stoklosa J, Griffiths J, Gust N, Ellis R, Huggins RM, Weeks AR. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecol Evol. 2012;2:844–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaither MR, Toonen RJ, Bowen BW. Coming out of the starting blocks: extended lag time rearranges genetic diversity in introduced marine fishes of Hawai’i. Proc R Soc B Biol Sci. 2012;279:3948–57.

    Article  Google Scholar 

  • Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S, McNeill L, Wallace EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Heron AJ, Turner DJ. Highly parallel direct RNA sequencing on an array of nanopores. Nat Meth. 2018;15:201–6.

    Article  CAS  Google Scholar 

  • Gardner JPA, Zbawicka M, Westfall KM, Wenne R. Invasive blue mussels threaten regional scale genetic diversity in mainland and remote offshore locations: the need for baseline data and enhanced protection in the Southern Ocean. Glob Chang Biol. 2016;22:3182–95.

    Article  PubMed  Google Scholar 

  • Ghabooli S, Zhan A, Sardiña P, Paolucci E, Sylvester F, Perepelizin PV, Briski E, Cristescu ME, MacIsaac HJ. Genetic diversity in introduced golden mussel populations corresponds to vector activity. PLoS One. 2013;8:e59328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist GW, Lee CE. All stressed out and nowhere to go: does evolvability limit adaptation in invasive species? Genetica. 2007;129:127–32.

    Article  PubMed  Google Scholar 

  • Gillis NK, Walters LJ, Fernandes FC, Hoffman EA. Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Divers Distrib. 2009;15:784–95.

    Article  Google Scholar 

  • Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol. 2015;24:610–27.

    Article  CAS  PubMed  Google Scholar 

  • Gleason LU, Burton RS. Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis. Mol Ecol. 2016a;25:3557–73.

    Article  PubMed  Google Scholar 

  • Gleason LU, Burton RS. Regional patterns of thermal stress and constitutive gene expression in the marine snail Chlorostoma funebralis in northern and southern California. Mar Ecol Prog Ser. 2016b;556:143–59.

    Article  Google Scholar 

  • Glotzbecker GJ, Alda F, Broughton RE, Neely DA, Mayden RL, Blum MJ. Geographic independence and phylogenetic diversity of red shiner introductions. Conserv Genet. 2016;17:795–809.

    Article  Google Scholar 

  • Golani D. The sandy shore of the Red Sea-launching pad for Lessepsian (Suez Canal) migrant fish colonizers of the eastern Mediterranean. J Biogeogr. 1993;20:579–85.

    Article  Google Scholar 

  • Golani D, Ben-Tuvia A. Characterisation of Lessepsian (Suez Canal) fish migrants. In: Spanier E, Steinberger Y, Lurie M, editors. Environmental quality and ecosystem stability: 1V-B. Jerusalem, Israel: ISEEQS; 1989. p. 235–43.

    Google Scholar 

  • Golani D, Sonin O. New records of the Red Sea fishes, Pterois miles (Scorpaenidae) and Pteragogus pelycus (Labridae) from the eastern Mediterranean Sea. Jpn J Ichthyol. 1992;39:167–9.

    Article  Google Scholar 

  • Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Sci. 2013;32:792–800.

    Article  Google Scholar 

  • Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, Spear SF, McKee A, Oyler-McCance SJ, Cornman RS, Laramie MB, Mahon AR, Lance RF, Pilliod DS, Strickler KM, Waits LP, Fremier AK, Takahara T, Herder JE, Taberlet P. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol. 2016;7:1299–307.

    Article  Google Scholar 

  • Gonzalez A, Ronce O, Ferriere R, Hochberg ME. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos Trans R Soc B Biol Sci. 2013;368:20120404.

    Article  Google Scholar 

  • Green SJ, Akins JL, Maljković A, Côté IM. Invasive lionfish drive Atlantic coral reef fish declines. PLoS One. 2012;7:e32596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guardiola M, Frotscher J, Uriz MJ. High genetic diversity, phenotypic plasticity, and invasive potential of a recently introduced calcareous sponge, fast spreading across the Atlanto-Mediterranean basin. Mar Biol. 2016;163:123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillemaud T, Beaumont MA, Ciosi M, Cornuet JM, Estoup A. Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity (Edinb). 2010;104:88–99.

    Article  CAS  Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, van Rooyen AR, Weeks AR, Tingley R. Dealing with false-positive and false-negative errors about species occurrence at multiple levels. Methods Ecol Evol. 2017;8:1081–91.

    Article  Google Scholar 

  • Guo W-Y, Lambertini C, Nguyen LX, Li X-Z, Brix H. Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America. Ecol Evol. 2014;4:4567–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo B, DeFaveri J, Sotelo G, Nair A, Merilä J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol. 2015;13:19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallatschek O, Nelson DR. Gene surfing in expanding populations. Theor Popul Biol. 2008;73:158–70.

    Article  PubMed  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R. A global map of human impact on marine ecosystems. Science. 2008;319:948–52.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JA, Okada M, Korves T, Schmitt J. The role of climate adaptation in colonization success in Arabidopsis thaliana. Mol Ecol. 2015;24:2253–63.

    Article  PubMed  Google Scholar 

  • Hamner RM, Freshwater DW, Whitfield PE. Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J Fish Biol. 2007;71:214–22.

    Article  CAS  Google Scholar 

  • Hand BK, Hether TD, Kovach RP, Muhlfeld CC, Amish SJ, Boyer MC, O’Rourke SM, Miller MR, Lowe WH, Hohenlohe PA, Luikart G. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing. Curr Zool. 2015;61:146–54.

    Article  Google Scholar 

  • Hänfling B, Bolton P, Harley M, Carvalho GR. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw Biol. 2005;50:403–17.

    Article  Google Scholar 

  • Hare JA, Whitfield PE. An integrated assessment of the introduction of lionfish (Pterois volitans/miles complex) to the western Atlantic Ocean. NOAA Technical Memorandum NOS NCCOS 2. 2003. 21 pp.

    Google Scholar 

  • Harvey-Samuel T, Ant T, Alphey L. Towards the genetic control of invasive species. Biol Invasions. 2017;19:1683–703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedge LH, O’Connor WA, Johnston EL. Manipulating the intrinsic parameters of propagule pressure: implications for bio-invasion. Ecosphere. 2012;3:1–13.

    Article  Google Scholar 

  • Hegarty MJ. Invasion of the hybrids. Mol Ecol. 2012;21:4669–71.

    Article  CAS  PubMed  Google Scholar 

  • Hemmer-Hansen J, Therkildsen NO, Pujolar JM. Population genomics of marine fishes: next-generation prospects and challenges. Biol Bull. 2014;227:117–32.

    Article  PubMed  Google Scholar 

  • Henery ML, Bowman G, Mráz P, Treier UA, Gex-Fabry E, Schaffner U, Müller-Schärer H. Evidence for a combination of pre-adapted traits and rapid adaptive change in the invasive plant Centaurea stoebe. J Ecol. 2010;98:800–13.

    Article  Google Scholar 

  • Hoban S, Kelley D, Lotterhos K, Antolin M, Bradburd G, Lowry DB, Poss M, Reed L, Storfer A, Whitlock M. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188:379–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofmann GE. Ecological epigenetics in marine metazoans. Front Mar Sci. 2017;4:4.

    Article  Google Scholar 

  • Hohenlohe PA, Amishm SJ, Catchen JM, Allendorf FW, Luikart G. Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour. 2011;11:117–22.

    Article  PubMed  Google Scholar 

  • Holle BV, Simberloff D. Ecological resistance to biological invasion overwhelmed by Propagule pressure. Ecology. 2005;86:3212–8.

    Article  Google Scholar 

  • Huang X, Li S, Ni P, Gao Y, Jiang B, Zhou Z, Zhan A. Rapid response to changing environments during biological invasions: DNA methylation perspectives. Mol Ecol. 2017;26:6621–33.

    Article  CAS  PubMed  Google Scholar 

  • Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L. Rapid evolution of a geographic cline in size in an introduced fly. Science. 2000;287:308–9.

    Article  CAS  PubMed  Google Scholar 

  • Huey RB, Gilchrist A, Hendry AP. Using invasive species to study evolution. In: Sax DF, Stachowicz JJ, Gaines SD, editors. Species invasions: insights into ecology, evolution and biogeography. Sunderland, MA: Sinauer Associates; 2005. p. 139–64.

    Google Scholar 

  • Hulme PE. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol. 2009;46:10–8.

    Article  Google Scholar 

  • Huxel GR. Rapid displacement of native species by invasive species: effects of hybridization. Biol Conserv. 1999;89:143–52.

    Article  Google Scholar 

  • IMO. International facts and figures – information resources on trade, safety, security, environment. Maritime Knowledge Centre; 2012.

    Google Scholar 

  • Jeffery NW, DiBacco C, Van Wyngaarden M, Hamilton LC, Stanley RRE, Bernier R, FitzGerald J, Matheson K, McKenzie CH, Nadukkalam Ravindran P, Beiko R, Bradbury IR. RAD sequencing reveals genomewide divergence between independent invasions of the European green crab (Carcinus maenas) in the Northwest Atlantic. Ecol Evol. 2017;7:2513–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jerde CL, Chadderton WL, Mahon AR, Renshaw MA, Corush J, Budny ML, Mysorekar S, Lodge DM. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can J Fish Aquat Sci. 2013;70:522–6.

    Article  CAS  Google Scholar 

  • Johnston EL, Piola RF, Clark GF. The role of propagule pressure in invasion success. In: Rilov G, Crooks JA, editors. Biological invasions in marine ecosystems, ecological studies 204. Berlin: Springer; 2009.

    Google Scholar 

  • Johnston SE, Orell P, Pritchard VL, Kent MP, Lien S, Niemelä E, Erkinaro J, Primmer CR. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Mol Ecol. 2014;23:3452–68.

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Bird CE, Johnston MA, Fogg AQ, Hogan JD. Regional genetic structure and genetic founder effects in the invasive lionfish: comparing the Gulf of Mexico, Caribbean and North Atlantic. Mar Biol. 2016;163:216.

    Article  Google Scholar 

  • Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11):1403–5.

    Article  CAS  PubMed  Google Scholar 

  • Keller L, Waller D. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230–41.

    Article  Google Scholar 

  • Kelly DW, Muirhead JR, Heath DD, Macisaac HJ. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol Ecol. 2006;15:3641–53.

    Article  CAS  PubMed  Google Scholar 

  • Kelly RP, Port JA, Yamahara KM, Crowder LB. Using environmental DNA to census marine fishes in a large mesocosm. PLoS One. 2014;9:e86175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klymus KE, Richter CA, Chapman DC, Paukert C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol Conserv. 2015;183:77–84.

    Article  Google Scholar 

  • Kolar CS, Lodge DM. Freshwater nonindigenous species: interactions with other global changes. In: Mooney HA, Hobbs RJ, editors. Invasive species in a changing world. Washington, DC: Island Press; 2000. p. 3–30.

    Google Scholar 

  • Konečný A, Estoup A, Duplantier J-M, Bryja J, Bâ K, Galan M, Tatard C, Cosson J-F. Invasion genetics of the introduced black rat (Rattus rattus) in Senegal, West Africa. Mol Ecol. 2013;22:286–300.

    Article  PubMed  Google Scholar 

  • Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC, Neville HH, Muhlfeld CC, Amish SJ, Carim K, Narum SR, Lowe WH, Allendorf FW, Luikart G. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc R Soc B Biol Sci. 2016;283:1843.

    Google Scholar 

  • Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Pyšek P, Ricciardi A, Bacher S, Blackburn TM, Dick JTA, Evans T, Hulme PE, Kühn I, Mrugała A, Pergl J, Rabitsch W, Richardson DM, Sendek A, Winter M. Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience. 2015;65:55–63.

    Article  Google Scholar 

  • Lacoursière-Roussel A, Côté G, Leclerc V, Bernatchez L. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J Appl Ecol. 2016;53:1148–57.

    Article  CAS  Google Scholar 

  • Lancaster ML, Bradshaw CJA, Goldsworthy SD, Sunnucks P. Lower reproductive success in hybrid fur seal males indicates fitness costs to hybridization. Mol Ecol. 2007;16:3187–97.

    Article  CAS  PubMed  Google Scholar 

  • Lahoz-Monfort JJ, Guillera-Arroita G, Tingley R. Statistical approaches to account for false-positive errors in environmental DNA samples. Mol Ecol Resour. 2016;16:673–85.

    Article  CAS  PubMed  Google Scholar 

  • Lande R. Evolution of phenotypic plasticity in colonizing species. Mol Ecol. 2015;24:2038–45.

    Article  PubMed  Google Scholar 

  • Larson ER, Renshaw MA, Gantz CA, Umek J, Chandra S, Lodge DM, Egan SP. Environmental DNA (eDNA) detects the invasive crayfishes Orconectes rusticus and Pacifastacus leniusculus in large lakes of North America. Hydrobiologia 2017;800:173–85.

    Article  CAS  Google Scholar 

  • Lau JA, terHorst CP. Causes and consequences of failed adaptation to biological invasions: the role of ecological constraints. Mol Ecol. 2015;24:1987–98.

    Article  PubMed  Google Scholar 

  • Lee CE. Evolutionary genetics of invasive species. Trends Ecol Evol. 2002:386–91.

    Article  Google Scholar 

  • Lin Y, Chen Y, Yi C, Fong JJ, Kim W, Rius M, Zhan A. Genetic signatures of natural selection in a model invasive ascidian. Sci Rep. 2017;7:44080.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lippman ZB, Zamir D. Heterosis: revisiting the magic. Trends Genet. 2007;23:60–6.

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trends Ecol Evol. 2005;20:223–8.

    Article  PubMed  Google Scholar 

  • Lockwood BL, Sanders JG, Somero GN. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exp Biol. 2010;213(20):3548–58.

    Article  CAS  PubMed  Google Scholar 

  • Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS One. 2010;5:e9743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowry E, Rollinson EJ, Laybourn AJ, Scott TE, Aiello-Lammens ME, Gray SM, Mickley J, Gurevitch J. Biological invasions: a field synopsis, systematic review, and database of the literature. Ecol Evol. 2013;3:182–96.

    Article  PubMed Central  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.

    Article  CAS  PubMed  Google Scholar 

  • Mahon AR, Jerde CL, Galaska M, Bergner JL, Chadderton WL, Lodge DM, Hunter ME, Nico LG. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS One. 2013;8:e58316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon AR, Nathan LR, Jerde CL. Meta-genomic surveillance of invasive species in the bait trade. Conserv Genet Resour. 2014;6:563–7.

    Article  Google Scholar 

  • Marescaux J, von Oheimb KCM, Etoundi E, von Oheimb PV, Albrecht C, Wilke T, Van Doninck K. Unravelling the invasion pathways of the quagga mussel (Dreissena rostriformis) into Western Europe. Biol Invasions. 2016;18:245–64.

    Article  Google Scholar 

  • Marguerat S, Wilhelm Brian T, Bähler J. Next-generation sequencing: applications beyond genomes. Biochem Soc Trans. 2008;36(Pt 5):1091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama A, Nakamura K, Yamanaka H, Kondoh M, Minamoto T. The release rate of environmental DNA from juvenile and adult fish. PLoS One. 2014;9:e114639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marx V. Biology: the big challenges of big data. Nature. 2013;498:255–60.

    Article  CAS  PubMed  Google Scholar 

  • Masters G, Norgrove L. Climate change and invasive alien species. CABI Working Paper 1. 2010.

    Google Scholar 

  • May P, Liao W, Wu Y, Shuai B, Richard McCombie W, Zhang MQ, Liu QA. The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun. 2013;4:2145.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci. 1950;36:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKnight E, García-Berthou E, Srean P, Rius M. Global meta-analysis of native and nonindigenous trophic traits in aquatic ecosystems. Glob Chang Biol. 2017;23:1861–70.

    Article  PubMed  Google Scholar 

  • McQuillan JS, Robidart JC. Molecular-biological sensing in aquatic environments: recent developments and emerging capabilities. Curr Opin Biotechnol. 2017;45(Suppl C):43–50.

    Article  CAS  PubMed  Google Scholar 

  • Mead A, Carlton JT, Griffiths CL, Rius M. Revealing the scale of marine bioinvasions in developing regions, a south African re-assessment. Biol Invasions. 2011;13:1991–2008.

    Article  Google Scholar 

  • Meilink WRM, Arntzen JW, van Delft JJCW, Wielstra B. Genetic pollution of a threatened native crested newt species through hybridization with an invasive congener in the Netherlands. Biol Conserv. 2015;184:145–53.

    Article  Google Scholar 

  • Minchin D, Gollasch S. Fouling and Ships’ Hulls: how changing circumstances and spawning events may result in the spread of exotic species. Biofouling. 2003;19:111–22.

    Article  PubMed  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD. Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ. 2008;6:485–92.

    Article  Google Scholar 

  • Moran EV, Alexander JM. Evolutionary responses to global change: lessons from invasive species. Ecol Lett. 2014;17:637–49.

    Article  PubMed  Google Scholar 

  • Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF, Lowe WH, Luikart G, Allendorf FW. Invasive hybridization in a threatened species is accelerated by climate change. Nat Clim Change. 2014;4:620–4.

    Article  Google Scholar 

  • Narum SR, Gallardo P, Correa C, Matala A, Hasselman D, Sutherland BJG, Bernatchez L. Genomic patterns of diversity and divergence of two introduced salmonid species in Patagonia, South America. Evol Appl. 2017;10:402–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathan LR, Jerde CL, Budny ML, Mahon AR. The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade. Conserv Biol. 2015;29:430–9.

    Article  PubMed  Google Scholar 

  • Naylor RL, Williams SL, Strong DR. Aquaculture – a gateway for exotic species. Science. 2001;294:1655–6.

    Article  CAS  PubMed  Google Scholar 

  • NHGRI. The cost of sequencing a human genome. 2016. https://www.genome.gov/sequencingcosts/.

  • Nydam ML, Yanckello LM, Bialik SB, Giesbrecht KB, Nation GK, Peak JL. Introgression in two species of broadcast spawning marine invertebrate. Biol J Linn Soc. 2017a;120:879–90.

    Article  Google Scholar 

  • Nydam ML, Giesbrecht KB, Stephenson EE. Origin and dispersal history of two colonial ascidian clades in the Botryllus schlosseri species complex. PLoS One. 2017b;12:e0169944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ocaña K, de Oliveira D. Parallel computing in genomic research: advances and applications. Adv Appl Bioinforma Chemistry. 2015;8:23–35.

    Google Scholar 

  • Oduor AMO. Evolutionary responses of native plant species to invasive plants: a review. New Phytol. 2013;200:986–92.

    Article  PubMed  Google Scholar 

  • Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila Pest. Genome Biol Evol. 2013;5:745–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orr HA, Turelli M. The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution. 2001;55:1085–94.

    Article  CAS  PubMed  Google Scholar 

  • Oyarzún PA, Toro JE, Cañete JI, Gardner JPA. Bioinvasion threatens the genetic integrity of native diversity and a natural hybrid zone: smooth-shelled blue mussels (Mytilus spp.) in the strait of Magellan. Biol J Linn Soc. 2016;117:574–85.

    Article  Google Scholar 

  • Padilla DK, Williams SL. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front Ecol Environ. 2004;2:131–8.

    Article  Google Scholar 

  • Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol. 2015;6:445–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parente TE, Moreira DA, Magalhães MGP, de Andrade PCC, Furtado C, Haas BJ, Stegeman JJ, Hahn ME. The liver transcriptome of suckermouth armoured catfish (Pterygoplichthys anisitsi, Loricariidae): identification of expansions in defensome gene families. Mar Pollut Bull. 2017;115:352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol. 2016;25:2337–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedreschi D, Kelly-Quinn M, Caffrey J, O’Grady M, Mariani S. Genetic structure of pike (Esox lucius) reveals a complex and previously unrecognized colonization history of Ireland. J Biogeogr. 2014;41:548–60.

    Article  PubMed  Google Scholar 

  • Pérez-Portela R, Bumford A, Coffman B, Wedelich S, Davenport M, Fogg A, Swenarton MK, Coleman F, Johnston MA, Crawford DL, Oleksiak MF. Genetic homogeneity of the invasive lionfish across the Northwestern Atlantic and the Gulf of Mexico based on single nucleotide polymorphisms. Sci Rep. 2018;8:5062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry WL, Feder JL, Lodge DM. Implications of hybridization between introduced and resident Orconectes crayfishes. Conserv Biol. 2001;15:1656–66.

    Article  Google Scholar 

  • Pfeifer B, Wittelsburger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol Biol Evol. 2014;31:1929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips BL, Shine R. Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc Natl Acad Sci U S A. 2004;101:17150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piaggio AJ, Engeman RM, Hopken MW, Humphrey JS, Keacher KL, Bruce WE, Avery ML. Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Mol Ecol Resour. 2014;14:374–80.

    Article  CAS  PubMed  Google Scholar 

  • Pigliucci M. Phenotypic plasticity: beyond nature and nurture. Baltimore: JHU Press; 2001.

    Google Scholar 

  • Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ. 2005;52:273–88.

    Article  Google Scholar 

  • Pray LA. Transposons: the jumping genes. Nat Educ. 2008;1:204.

    Google Scholar 

  • Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13:288–94.

    Article  CAS  PubMed  Google Scholar 

  • Pu C, Zhan A. Epigenetic divergence of key genes associated with water temperature and salinity in a highly invasive model ascidian. Biol Invasions. 2017;19:2015–28.

    Article  Google Scholar 

  • Pudlo P, Marin J-M, Estoup A, Cornuet J-M, Gautier M, Robert CP. Reliable ABC model choice via random forests. Bioinformatics. 2016;32:859–66.

    Article  CAS  PubMed  Google Scholar 

  • Purcell KM, Ling N, Stockwell CA. Evaluation of the introduction history and genetic diversity of a serially introduced fish population in New Zealand. Biol Invasions. 2012;14:2057–65.

    Article  Google Scholar 

  • Puzey J, Vallejo-Marin M. Genomics of invasion: diversity and selection in introduced populations of monkeyflowers (Mimulus guttatus). Mol Ecol. 2014;23:4472–85.

    Article  PubMed  Google Scholar 

  • Pyšek P, Richardson DM. Invasive species, environmental change and management, and health. Annu Rev Env Resour. 2010;35:25–55.

    Article  Google Scholar 

  • Rahel FJ, Bierwagen B, Taniguchi Y. Managing aquatic species of conservation concern in the face of climate change and invasive species Manejo de Especies Acuáticas de Interés para la Conservación ante el Cambio Climático y las Especies Invasoras. Conserv Biol. 2008;22:551–61.

    Article  PubMed  Google Scholar 

  • Rašić G, Filipović I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics. 2014;15:275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reitzel AM, Herrera S, Layden MJ, Martindale MQ, Shank TM. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol. 2013;22:2953–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejmánek M, Richardson DM. What attributes make some plant species more invasive? Ecology. 1996;77:1655–61.

    Article  Google Scholar 

  • Rhymer JM, Simberloff D. Extinction by hybridization and introgression. Annu Rev Ecol Syst. 1996;27:83–109.

    Article  Google Scholar 

  • Ricciardi A, Macisaac HJ. Impacts of biological invasions on freshwater ecosystems. In: Fifty years of invasion ecology. Wiley-Blackwell; 2010. p. 211–24.

    Google Scholar 

  • Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE, Iacarella JC, Jeschke JM, Liebhold AM, Lockwood JL, MacIsaac HJ, Pyšek P, Richardson DM, Ruiz GM, Simberloff D, Sutherland WJ, Wardle DA, Aldridge DC. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol. 2017;32:464–74.

    Article  PubMed  Google Scholar 

  • Richardson MF, Sherman CDH. De novo assembly and characterization of the invasive northern Pacific Seastar Transcriptome. PLoS One. 2015;10:e0142003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson DM, Pysek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. Naturalization and invasion of alien plants-concepts and definitions. Divers Distrib. 2000;6:93–107.

    Article  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK. Transgressive segregation, adaptation and speciation. Heredity (Edinb). 1999;83:363–72.

    Article  Google Scholar 

  • Riquet F, Daguin-Thiebaut C, Ballenghien M, Bierne N, Viard F. Contrasting patterns of genome-wide polymorphism in the native and invasive range of the marine mollusc Crepidula fornicata. Mol Ecol. 2013;22:1003–18.

    Article  CAS  PubMed  Google Scholar 

  • Rius M, Darling JA. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol. 2014;29:233–42.

    Article  PubMed  Google Scholar 

  • Rius M, Turon X, Ordonez V, Pascual M. Tracking invasion histories in the sea: facing complex scenarios using multilocus data. PLoS One. 2012;7:e35815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rius M, Clusella-Trullas S, McQuaid CD, Navarro RA, Griffiths CL, Matthee CA, von der Heyden S, Turon X. Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Glob Ecol Biogeogr. 2014;23:76–88.

    Article  Google Scholar 

  • Rius M, Bourne S, Hornsby H, Chapman D. Applications of next-generation sequencing to the study of biological invasions. Curr Zool. 2015a;61:488–504.

    Article  Google Scholar 

  • Rius M, Turon X, Bernardi G, Volckaert FAM, Viard F. Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biol Invasions. 2015b;17:869–85.

    Article  Google Scholar 

  • Roderick GK, Navajas M. Genes in new environments: genetics and evolution in biological control. Nat Rev Genet. 2003;4:889–99.

    Article  CAS  PubMed  Google Scholar 

  • Roman J, Darling JA. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol. 2007;22:454–64.

    Article  PubMed  Google Scholar 

  • Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, Chiari Y, Dernat R, Duret L, Faivre N, Loire E, Lourenco JM, Nabholz B, Roux C, Tsagkogeorga G, Weber AAT, Weinert LA, Belkhir K, Bierne N, Glemin S, Galtier N. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature. 2014;515:261–3.

    Article  CAS  PubMed  Google Scholar 

  • Rossman AY. A special issue on global movement of invasive plants and fungi. Bioscience. 2001;51:93–4.

    Article  Google Scholar 

  • Saarman NP, Pogson GH. Introgression between invasive and native blue mussels (genus Mytilus) in the Central California hybrid zone. Mol Ecol. 2015;24:4723–38.

    Article  CAS  PubMed  Google Scholar 

  • Salvi D, Macali A, Mariottini P. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree. PLoS One. 2014;9:e108696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG. The population biology of invasive species. Annu Rev Ecol Evol Syst. 2001;32:305–32.

    Article  Google Scholar 

  • Sassenhagen I, Wilken S, Godhe A, Rengefors K. Phenotypic plasticity and differentiation in an invasive freshwater microalga. Harmful Algae. 2015;41:38–45.

    Article  Google Scholar 

  • Sassoubre LM, Yamahara KM, Gardner LD, Block BA, Boehm AB. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ Sci Technol. 2016;50:10456–64.

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Bishop JD. Field identification of “types” A and B of the ascidian Ciona intestinalis in a region of sympatry. Mar Biol. 2012;159:1611–9.

    Article  Google Scholar 

  • Sax DF, Stachowicz JJ, Gaines SD. Introduction. In: Stachowicz JJ, Gaines SD, editors. Species invasions: insights into ecology, evolution, and biogeography. Sunderland, MA: Sinauer Associates Inc.; 2005.

    Google Scholar 

  • Schlaepfer DR, Glättli M, Fischer M, van Kleunen M. A multi-species experiment in their native range indicates pre-adaptation of invasive alien plant species. New Phytol. 2010;185:1087–99.

    Article  PubMed  Google Scholar 

  • Scholin CA. What are “ecogenomic sensors?” A review and thoughts for the future. Ocean Sci. 2010;6:51–60.

    Article  CAS  Google Scholar 

  • Schrader L, Kim JW, Ence D, Zimin A, Klein A, Wyschetzki K, Weichselgartner T, Kemena C, Stökl J, Schultner E, Wurm Y, Smith CD, Yandell M, Heinze J, Gadau J, Oettler J. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat Commun. 2014;5:5495.

    Article  CAS  PubMed  Google Scholar 

  • Schultz MT, Lance RF. Modeling the sensitivity of field surveys for detection of environmental DNA (eDNA). PLoS One. 2015;10:e0141503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scriver M, Marinich A, Wilson C, Freeland J. Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquat Bot. 2015;122:27–31.

    Article  CAS  Google Scholar 

  • Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Gen. 2018. https://doi.org/10.1038/s41576-018-0003-4.

    Article  CAS  PubMed  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jäger H, Kartesz J, Kenis M, Kreft H, Kühn I, Lenzner B, Liebhold A, Mosena A, Moser D, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Štajerová K, Tokarska-Guzik B, van Kleunen M, Walker K, Weigelt P, Yamanaka T, Essl F. No saturation in the accumulation of alien species worldwide. Nat Commun. 2017;8:14435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman CDH, Lotterhos KE, Richardson MF, Tepolt CK, Rollins LA, Palumbi SR, Miller AD. What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol. 2016;163:198.

    Article  Google Scholar 

  • Sigsgaard EE, Nielsen IB, Bach SS, Lorenzen ED, Robinson DP, Knudsen SW, Pedersen MW, Jaidah MA, Orlando L, Willerslev E, Møller PR, Thomsen PF. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat Ecol Evol. 2016;1:0004.

    Article  Google Scholar 

  • Sigsgaard EE, Nielsen IB, Carl H, Krag MA, Knudsen SW, Xing Y, Holm-Hansen TH, Møller PR, Thomsen PF. Seawater environmental DNA reflects seasonality of a coastal fish community. Mar Biol. 2017;164:128.

    Article  CAS  Google Scholar 

  • Simberloff D. The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst. 2009;40:81–102.

    Article  Google Scholar 

  • Simberloff D. Biological invasions: prospects for slowing a major global change. Elem Sci Anth. 2013;1:000008.

    Article  Google Scholar 

  • Simon A, Britton R, Gozlan R, van Oosterhout C, Volckaert FAM, Hänfling B. Invasive cyprinid fish in Europe originate from the single introduction of an admixed source population followed by a complex pattern of spread. PLoS One. 2011;6:e18560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson TJS, Dias PJ, Snow M, Muñoz J, Berry T. Real-time PCR detection of Didemnum perlucidum (Monniot, 1983) and Didemnum vexillum (Kott, 2002) in an applied routine marine biosecurity context. Mol Ecol Resour. 2017;17:443–53.

    Article  CAS  PubMed  Google Scholar 

  • Sinclair JS, Arnott SE. Strength in size not numbers: propagule size more important than number in sexually reproducing populations. Biol Invasions. 2016;18:497–505.

    Article  Google Scholar 

  • Sloop CM, Ayres DR, Strong DR. The rapid evolution of self-fertility in Spartina hybrids (Spartina alterniflora × foliosa) invading San Francisco Bay, CA. Biol Invasions. 2009;11:1131–44.

    Article  Google Scholar 

  • Somero GN. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J Exp Biol. 2010;213:912–20.

    Article  CAS  PubMed  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW. Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci. 2002;99:15497–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapley J, Reger J, Feulner PG, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J. Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25:705–12.

    Article  PubMed  Google Scholar 

  • Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol. 2015;24:2241–52.

    Article  CAS  PubMed  Google Scholar 

  • Stelkens RB, Brockhurst MA, Hurst GDD, Miller EL, Greig D. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses. J Evol Biol. 2014;27:2507–19.

    Article  CAS  PubMed  Google Scholar 

  • Stelkens RB, Schmid C, Seehausen O. Hybrid breakdown in Cichlid fish. PLoS One. 2015;10:e0127207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE. Big data: astronomical or genomical? PLoS Biol. 2015;13:e1002195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity (Edinb). 2008;100:158–70.

    Article  CAS  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT. Contemporary evolution meets conservation biology. Trends Ecol Evol. 2002;18:94–101.

    Article  Google Scholar 

  • Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. Rapid evolution of a native species following invasion by a congener. Science. 2014;346:463–6.

    Article  CAS  PubMed  Google Scholar 

  • Suarez AV, Tsutsui ND. The evolutionary consequences of biological invasions. Mol Ecol. 2008;17:351–60.

    Article  PubMed  Google Scholar 

  • Sullivan W. The institute for the study of non-model organisms and other fantasies. Mol Biol Cell. 2015;26:387–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahara T, Minamoto T, Yamanaka H, Doi H, Zi K. Estimation of fish biomass using environmental DNA. PLoS One. 2012;7:e35868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara T, Minamoto T, Doi H. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS One. 2013;8:e56584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tepolt CK. Adaptation in marine invasion: a genetic perspective. Biol Invasions. 2015;17:887–903.

    Article  Google Scholar 

  • Tepolt CK, Palumbi SR. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol Ecol. 2015;24:4145–58.

    Article  CAS  PubMed  Google Scholar 

  • Teske PR, Sandoval-Castillo J, Sasaki M, Beheregaray LB. Invasion success of a habitat-forming marine invertebrate is limited by lower-than-expected dispersal ability. Mar Ecol Prog Ser. 2015;536:221–7.

    Article  Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL, Moller PR, Rasmussen M, Willerslev E. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One. 2012;7:e41732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E. Environmental DNA from seawater samples correlate with trawl catches of subarctic, Deepwater fishes. PLoS One. 2016;11:e0165252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toews DP, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–30.

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Hernández C, Vélez-Zuazo X, Ruiz-Diaz CP, Patricio AR, Mège P, Navarro M, Sabat AM, Betancur RR, Papa R. Population ecology and genetics of the invasive lionfish in Puerto Rico. Aquat Invasions. 2014;9:227–37.

    Article  Google Scholar 

  • Tournadre J. Anthropogenic pressure on the open ocean: the growth of ship traffic revealed by altimeter data analysis. Geophys Res Lett. 2014;41:7924–32.

    Article  Google Scholar 

  • Trucchi E, Mazzarella AB, Gilfillan GD, Lorenzo MT, Schönswetter P, Paun O. BsRADseq: screening DNA methylation in natural populations of non-model species. Mol Ecol. 2016;25:1697–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trumbo DR, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (Rhinella marina) in Australia. Mol Ecol. 2016;25:4161–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsoar A, Shohami D, Nathan R. A movement ecology approach to study seed dispersal and plant invasion: an overview and application of seed dispersal by Fruit Bats. In: Richardson DM, editor. Fifty years of invasion ecology: the legacy of Charles Elton. Oxford, UK: Blackwell Publishing Ltd; 2011. p. 103–19.

    Google Scholar 

  • Tucker AJ, Chadderton WL, Jerde CL, Renshaw MA, Uy K, Gantz C, Mahon AR, Bowen A, Strakosh T, Bossenbroek JM, Sieracki JL, Beletsky D, Bergner J, Lodge DM. A sensitive environmental DNA (eDNA) assay leads to new insights on Ruffe (Gymnocephalus cernua) spread in North America. Biol Invasions. 2016;18:3205–22.

    Article  Google Scholar 

  • Turner CR, Barnes MA, Xu CCY, Jones SE, Jerde CL, Lodge DM. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol Evol. 2014;5:676–84.

    Article  Google Scholar 

  • Twyford AD, Ennos RA. Next-generation hybridization and introgression. Heredity. 2012;108:179–89.

    Article  CAS  PubMed  Google Scholar 

  • Uchii K, Doi H, Minamoto T. A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes. Mol Ecol Resour. 2016;16:415–22.

    Article  CAS  PubMed  Google Scholar 

  • Ungerer MC, Baird SJE, Pan J, Rieseberg LH. Rapid hybrid speciation in wild sunflowers. Proc Natl Acad Sci. 1998;95:11757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R, García-Rivas MC. Monitoring an Alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS One. 2012;7:e36636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kleunen M, Dawson W, Maurel N. Characteristics of successful alien plants. Mol Ecol. 2015;24:1954–68.

    Article  PubMed  Google Scholar 

  • Vandepitte K, de Meyer T, Helsen K, van Acker K, Roldan-Ruiz I, Mergeay J, Honnay O. Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol. 2014;23:2157–64.

    Article  PubMed  Google Scholar 

  • Vera M, Díez-del-Molino D, García-Marín J-L. Genomic survey provides insights into the evolutionary changes that occurred during European expansion of the invasive mosquitofish (Gambusia holbrooki). Mol Ecol. 2016;25:1089–105.

    Article  CAS  PubMed  Google Scholar 

  • Viard F, David P, Darling JA. Marine invasions enter the genomic era: three lessons from the past, and the way forward. Curr Zool. 2016;62:629–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voisin M, Engel CR, Viard F. Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci. 2005;102(15):5432–7.

    Article  CAS  Google Scholar 

  • Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, Sivasundar A, Seehausen O. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol. 2013;22:787–98.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter DD, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe AP. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science. 2016;351(6269).

    Article  PubMed  CAS  Google Scholar 

  • Webber BL, Raghu S, Edwards OR. Opinion: is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proc Natl Acad Sci. 2015;112:10565–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber DS, Stewart BS, Lehman N. Genetic consequences of a severe population bottleneck in the Guadalupe Fur seal (Arctocephalus townsendi). J Hered. 2004;95:144–53.

    Article  CAS  PubMed  Google Scholar 

  • Weinig C, Brock MT, Dechaine JA, Welch SM. Resolving the genetic basis of invasiveness and predicting invasions. Genetica. 2007;129:205–16.

    Article  PubMed  Google Scholar 

  • Wellband KW, Heath DD. Plasticity in gene transcription explains the differential performance of two invasive fish species. Evol Appl. 2017;10:563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TA, Perkins SE, Heckel G, Searle JB. Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol. 2013;22:2971–85.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield PE, Gardner T, Vives SP, Gilligan MR, Courtenay WR Jr, Ray C, Hare JA. Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser. 2002;235:289–97.

    Article  Google Scholar 

  • Whitney KD, Gabler CA. Rapid evolution in introduced species, “invasive traits” and recipient communities: challenges for predicting invasive potential. Divers Distrib. 2008;14:569–80.

    Article  Google Scholar 

  • Whitney KD, Broman KW, Kane NC, Hovick SM, Randell RA, Rieseberg LH. Quantitative trait locus mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower. Mol Ecol. 2015;24:2194–211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Widmer A, Schmid-Hempel P, Estoup A, Scholl A. Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity. 1998;81:563–72.

    Article  Google Scholar 

  • Wilcox CL, Motomura H, Matsunuma M, Bowen BW. Phylogeography of lionfishes (Pterois) indicate taxonomic over splitting and hybrid origin of the invasive Pterois volitans. J Hered. 2018;14:162–75.

    Article  CAS  Google Scholar 

  • Willan RC, Russell BC, Murfet NB, Moore KL, McEnnulty FR, Horner SK, Hewitt CL, Dally GM, Campbell ML, Bourke ST. Outbreak of Mytilopsis sallei (Récluz, 1849) (Bivalvia: Dreissenidae) in Australia. Molluscan Res. 2000;20:25–30.

    Article  Google Scholar 

  • Williams F, Eschen R, Harris A, Djeddour D, Pratt C, Shaw R, Varia S, Lamontagne-Godwin J, Thomas S, Murphy S. The economic cost of invasive non-native species on Great Britain. CABI Project Number VM10066. 2010. p. 1–99.

    Google Scholar 

  • Williams M, Zalasiewicz J, Haff P, Schwägerl C, Barnosky AD, Ellis EC. The Anthropocene biosphere. Anthropocene Rev. 2015;2:196–219.

    Article  Google Scholar 

  • Williamson M. Invaders, weeds and the risk from genetically manipulated organisms. Experientia. 1993;49:219–24.

    Article  Google Scholar 

  • Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol. 2009;24:136–44.

    Article  PubMed  Google Scholar 

  • Wolf JBW, Bayer T, Haubold B, Schilhabel M, Rosenstiel P, Tautz D. Nucleotide divergence vs. gene expression differentiation: comparative transcriptome sequencing in natural isolates from the carrion crow and its hybrid zone with the hooded crow. Mol Ecol. 2010:162–75.

    Article  CAS  PubMed  Google Scholar 

  • Wrange A-L, Charrier G, Thonig A, Alm Rosenblad M, Blomberg A, Havenhand JN, Jonsson PR, André C. The story of a hitchhiker: population genetic patterns in the invasive barnacle Balanus(Amphibalanus) improvisus Darwin 1854. PLoS One. 2016;11:e0147082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto S, Minami K, Fukaya K, Takahashi K, Sawada H, Murakami H, Tsuji S, Hashizume H, Kubonaga S, Horiuchi T, Hongo M, Nishida J, Okugawa Y, Fujiwara A, Fukuda M, Hidaka S, Suzuki KW, Miya M, Araki H, Yamanaka H, Maruyama A, Miyashita K, Masuda R, Minamoto T, Kondoh M. Environmental DNA as a “Snapshot” of fish distribution: a case study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan. PLoS One. 2016;11:e0149786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P. Genomic signature of adaptation to climate in Medicago truncatula. Genetics. 2014;196:1263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Andrés JA. Genetic architecture of contemporary adaptation to biotic invasions: quantitative trait locus mapping of beak reduction in soapberry bugs. G3 (Bethesda). 2014;4:255–64.

    Article  CAS  Google Scholar 

  • Zaiko A, Martinez JL, Schmidt-Petersen J, Ribicic D, Samuiloviene A, Garcia-Vazquez E. Metabarcoding approach for the ballast water surveillance – an advantageous solution or an awkward challenge? Mar Pollut Bull. 2015;92:25–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-Y, Zhang D-Y, Barrett SCH. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Ecol. 2010;19:1774–86.

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Marjorie Oleksiak and Om Rajora for the invitation to contribute to this book. Data for Fig. 4 was partly supported by the Adventure in Research Grant AAIR15 from the University of Southampton to M.R. and Mark Chapman. SDB and LEH were supported by the Natural Environment Research Council [grant number NE/L002531/1]. JH was funded by the Southampton Marine and Maritime Institute. We are grateful to Xavier Turon for helpful comments during the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Bourne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bourne, S.D., Hudson, J., Holman, L.E., Rius, M. (2018). Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. In: Oleksiak, M., Rajora, O. (eds) Population Genomics: Marine Organisms. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_21

Download citation

Publish with us

Policies and ethics