Skip to main content

Advertisement

Log in

Predicted range expansion of the invasive plant Leucaena leucocephala in the Hengchun peninsula, Taiwan

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

We integrated correlative (species distribution) and process-based (agent-based) modeling approaches—to predict future range expansion of an invasive plant (Leucaena leucocephala) in the lowland rainforest and tropical coastal forest ecosystems of the Hengchun peninsula, Taiwan. We simulated range expansion to the year 2027 using a spatially-explicit, agent-based model representing invasion rate as a function of habitat quality and propagule pressure. We developed an index of habitat quality by relating 1988 plant distribution data to geo-referenced data on climatic conditions, landscape features, and anthropogenic factors via logistic regression. We represented propagule pressure using a lognormal dispersal kernel. We evaluated model performance by simulating range expansion from 1988 to 2007 and comparing simulated distribution patterns to those observed in 2007. Results of logistic regression indicated that L. leucocephala is more likely to occur in warm, dry areas containing a higher percentage of natural landscape (forest or grassland), areas adjacent to the forest edge, and areas disturbed by human activities such as a main road or an abandoned sisal plantation. Model evaluation showed that the prediction performance is excellent with AUC > 0.9 and Mantel’s r = 0.77. Our results indicated that L. leucocephala will continue from the western portion toward the southern and central portions of Checheng township, and throughout the southern portion of Hengchun and Manjhou townships, with about 2500 ha of new area invaded within the next 20 years. Our predictions should allow managers to develop proactive management plans for the areas most likely to be invaded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agresti A (2007) An introduction to categorical data analysis. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson NL (eds) Second international symposium on information theory. Academia Kiado, Budapest, pp 267–281

  • Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15:1263–1272

    Article  Google Scholar 

  • Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Brown KA, Scatena FN, Gurevitch J (2006) Effects of an invasive tree on community structure and diversity in a tropical forest in Puerto Rico. For Ecol Manage 226:145–152

    Article  Google Scholar 

  • Bullock J, Shea K, Skarpaas O (2006) Measuring plant dispersal: an introduction to field methods and experimental design. Plant Ecol 186:217–234

    Article  Google Scholar 

  • Burczyk J, Koralewski TE (2005) Parentage versus two-generation analyses for estimating pollen-mediated gene flow in plant populations. Mol Ecol 14:2525–2537

    Article  CAS  PubMed  Google Scholar 

  • Catford JA, Vesk PA, Richardson DM, Pyšek P (2011) Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob Change Biol 18:44–62

    Article  Google Scholar 

  • Chan YH (2003) Biostatistics 104: correlational analysis. Singap Med J 44:614

    CAS  Google Scholar 

  • Cheung KC, Wong JPK, Zhang ZQ, Wong JWC, Wong MH (2000) Revegetation of lagoon ash using the legume species Acacia auriculiformis and Leucaena leucocephala. Environ Pollut 109:75–82

    Article  CAS  PubMed  Google Scholar 

  • Chiou C-R, Wang H-H, Chen Y-J, Grant William E, Lu M-L (2013) Modeling potential range expansion of the invasive shrub Leucaena leucocephala in the Hengchun peninsula. Taiwan, Invasive Plant Science and Management

    Google Scholar 

  • Chung Y-L, Lu M-L (2009) The survey and monitoring the distribution of Leucaena leucocephala in the Hengchun peninsula, Taiwan. For Res Newsl 16:23–26

    Google Scholar 

  • Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat 152:204–224

    Article  CAS  PubMed  Google Scholar 

  • Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80:1475–1494

    Article  Google Scholar 

  • Clark CJ, Poulsen JR, Bolker BM, Connor EF, Parker VT (2005) Comparative seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology 86:2684–2694

    Article  Google Scholar 

  • Costa H, Aranda SC, Lourenço P, Medeiros V, Azevedo EBd, Silva L (2012) Predicting successful replacement of forest invaders by native species using species distribution models: the case of Pittosporum undulatum and Morella faya in the Azores. For Ecol Manag 279:90–96

    Article  Google Scholar 

  • CWB (2012) Historical typhoon record. Retrieved from http://rdc28.cwb.gov.tw/data.php. 26 Sep 2012

  • Egara K, Jones R (1977) Effect of shading on the seedling growth of the leguminous shrub Leucaena leucocephala. Aust J Exp Agric 17:976–981

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • ESRI (2009) ArcGIS. Environmental Systems Research Institute, Redlands, CA, USA

    Google Scholar 

  • Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11:1301–1310

    Article  Google Scholar 

  • FACTNet (1997) Leucaena leucocephala—a versatile nitrogen fixing tree. Retrieved from http://www.winrock.org/fnrm/factnet/factpub/FACTSH/leucaena.htm. 22 Apr 2013

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:355–369

    Article  Google Scholar 

  • Gan J, Miller JH, Wang H-H, Taylor JW (2009) Invasion of tallow tree into southern US forests: influencing factors and implications for mitigation. Can J For Res 39:1346–1356

    Article  Google Scholar 

  • Greene DF, Calogeropoulos C (2002) Dispersal ecology: measuring and modelling seed dispersal of terrestrial plants. Blackwell, Oxford

    Google Scholar 

  • Greene DF, Canham CD, Coates KD, Lepage PT (2004) An evaluation of alternative dispersal functions for trees. J Ecol 92:758–766

    Article  Google Scholar 

  • Guan L-H, Chen J-H (1995) The third survey of forest resources and land use. Bureau of Forestry, Council of Agriculture, Executive Yuan, Taipei, Taiwan

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Book  Google Scholar 

  • Hsu M-J, Agoramoorthy G (1999) Conserving the biodiversity of Taiwan’s Kenting National Park: present status and future challenges. In: Lin Y-S (ed) Biodiversity. National Taiwan University Press, Taipei, Taiwan, pp 62–72

    Google Scholar 

  • Hu C-Y (2001) The adaptation of the agricultural activities to season wind in Hengchun area, Taiwan. Department of Geography, National Taiwan Normal University, Taipei (in Chinese)

    Google Scholar 

  • IOT (2010) National transportation road network digital atlas. Institute of Transportation, Ministry Of Transportation And Communications

    Google Scholar 

  • Jongejans E, Skarpaas O, Shea K (2008) Dispersal, demography and spatial population models for conservation and control management. Perspect Plant Ecol Evol Syst 9:153–170

    Article  Google Scholar 

  • Klein EK, Lavigne C, Picault H, Renard M, Gouyon P-H (2006) Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J Appl Ecol 43:141–151

    Article  Google Scholar 

  • Kohli RK, Jose S, Singh HP, Batish DR (2008) Invasive plants and forest ecosystems. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Kuo Y-L (2007) The ecological character and management plan of the invasion species: Leucaena leucocephala. Q J Taiwan Mus 94:86–89 (in Chinese)

    Google Scholar 

  • Lee J-T (2003) Study on the spread and invasion of Leucaena leucocephala in Hengchung area. Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan (in Chinese)

    Google Scholar 

  • Liang Y-C (2004) Studies on zoning the ecoregion at domain and division levels in Taiwan. National Taiwan University, Taipei, Taiwan 122 pp

    Google Scholar 

  • Liu C-W (2009) International food regime and food dependency: the development of hog industry in Postwar Taiwan. Taiwan Hist Res 16:105–160 (in Chinese)

    Google Scholar 

  • Lu F-Y, Chen M-A (2002) The influence of exotic plants on native vegetation in Kenting National Park—an example of Leucaena Leucocephala (in Chinese). Research Report, Kenting National Park Administration Office, Construction and Planning Agency, Ministry of the Interior, pp 47

  • Lu M-L, Huang J-Y, Chung Y-L (2009) Spatial dynamics and regional analysis of Leucaena leucocephala in the Hungchun peninisula, Taiwan. J Photogramm Remote Sens 14:1–9 (in Chinese)

    Google Scholar 

  • Lu M-L, Huang J-Y, Chung Y-L, Huang C-Y (2013) Modelling the invasion of a central American Mimosoid tree species (Leucaena leucocephala) in a tropical coastal region of Taiwan. Remote Sens Lett 4:485–493

    Article  Google Scholar 

  • Marod D, Duengkae P, Kutintara U, Sungkaew S, Wachrinrat C, Asanok L, Klomwattanakul N (2012) The influences of an invasive plant species (Leucaena leucocephala) on tree regeneration in Khao Phuluang Forest, northeastern Thailand. Kasetsart J Nat Sci 46:39–50

    Google Scholar 

  • METI and NASA (2009) ASTER global digital elevation map. Japan and the United States

  • Montgomery DR, Huang MYF, Huang AYL (2014) Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan. Quat Res 81:15–20

    Article  Google Scholar 

  • Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413

    Article  CAS  PubMed  Google Scholar 

  • Nathan R, Horvitz N, He Y, Kuparinen A, Schurr FM, Katul GG (2011) Spread of North American wind-dispersed trees in future environments. Ecol Lett 14:211–219

    Article  PubMed  Google Scholar 

  • NLSC (1993) National land use investigation data. National Land Surveying and Mapping Center, Ministry of Interior, Taichung, Taiwan

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 2.0-2

  • Okubo A, Levin SA (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70:329–338

    Article  Google Scholar 

  • Okubo A, Simon AL (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70:329–338

    Article  Google Scholar 

  • Olckers T (2004) Targeting emerging weeds for biological control in South Africa: the benefits of halting the spread of alien plants at an early stage of their invasion: working for water. S Afr J Sci 100:64–68

    Google Scholar 

  • Ott RL, Longnecker MT (2001) An introduction to statistical methods and data analysis. Thomson Learning, Pacific Grove, CA

    Google Scholar 

  • Peterson A, Soberón J, Pearson R, Anderson R, Nakamura M, Martinez-Meyer E, Araújo M (2011) Ecological niches and geographical distributions. Princeton University Press, New Jersey

    Google Scholar 

  • Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustain 2:229–252

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Ribbens E, Silander JA, Pacala SW (1994) Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75:1794–1806

    Article  Google Scholar 

  • Richter R, Dullinger S, Essl F, Leitner M, Vogl G (2013) How to account for habitat suitability in weed management programmes? Biol Invasions 15:657–669

    Article  Google Scholar 

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12:77

    Article  Google Scholar 

  • Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change 2:248–253

    Article  Google Scholar 

  • Sebert-Cuvillier E, Simon-Goyheneche V, Paccaut F, Chabrerie O, Goubet O, Decocq G (2008) Spatial spread of an alien tree species in a heterogeneous forest landscape: a spatially realistic simulation model. Landscape Ecol 23:787–801

    Article  Google Scholar 

  • Shelton HM, Brewbaker JL (1994) Leucaena leucocephala-the most widely used forage tree legume. In: Gutteridge RC, Shelton HM (eds) Forage trees as legumes in tropical agriculture. CAB International, Wallingford, pp 15–29

    Google Scholar 

  • Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Skarpaas O, Shea K, Bullock JM (2005) Optimizing dispersal study design by Monte Carlo simulation. J Appl Ecol 42:731–739

    Article  Google Scholar 

  • Skellam J (1951) Random dispersal in theoretical populations. Bull Math Biol 53:135–165

    Article  Google Scholar 

  • Smolik MG, Dullinger S, Essl F, Kleinbauer I, Leitner M, Peterseil J, Stadler LM, Vogl G (2010) Integrating species distribution models and interacting particle systems to predict the spread of an invasive alien plant. J Biogeogr 37:411–422

    Article  Google Scholar 

  • Sobek-Swant S, Kluza DA, Cuddington K, Lyons DB (2012) Potential distribution of emerald ash borer: what can we learn from ecological niche models using Maxent and GARP? For Ecol Manage 281:23–31

    Article  Google Scholar 

  • Stoyan D, Wagner S (2001) Estimating the fruit dispersion of anemochorous forest trees. Ecol Model 145:35–47

    Article  Google Scholar 

  • Stromberg JC, Lite SJ, Marler R, Paradzick C, Shafroth PB, Shorrock D, White JM, White MS (2007) Altered stream-flow regimes and invasive plant species: the Tamarix case. Glob Ecol Biogeogr 16:381–393

    Article  Google Scholar 

  • Su H-J (1985) Studies on the climate and vegetation types of the natural forests in Taiwan (III): a scheme of geographical climatic regions. Q J Chin For 18:33–44

    Google Scholar 

  • Tufto J, Engen S, Hindar K (1997) Stochastic dispersal processes in plant populations. Theor Popul Biol 52:16–26

    Article  PubMed  Google Scholar 

  • Underwood EC, Hollander AD, Quinn JF (2013) Geospatial tools for identifying and managing invasive plants. Invasive plant ecology. CRC Press, Boca Raton, pp 175–202

    Google Scholar 

  • Wang H-H, Chang H-C, Hsu K-S, Horng C-H, Kao Y-C (2007) Pioneer and alien tree species invade Banana Bay Coast Forest Reserve, Kenting National Park, southern Taiwan. J Natl Park 17:1–13 (in Chinese)

    CAS  Google Scholar 

  • Wang H-H, Grant WE, Swannack TM, Gan J, Rogers WE, Koralewski TE, Miller JH, Taylor JW (2011) Predicted range expansion of Chinese tallow tree (Triadica sebifera) in forestlands of the southern United States. Divers Distrib 17:552–565

    Article  Google Scholar 

  • Wang H-H, Grant WE, Gan J, Rogers WE, Swannack TM, Koralewski TE, Miller JH, Taylor JW (2012a) Integrating spread dynamics and economics of timber production to manage Chinese tallow invasions in southern U.S. forestlands. PLoS One 7:e33877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H-H, Wonkka CL, Grant WE, Rogers WE (2012b) Potential range expansion of Japanese honeysuckle (Lonicera japonica Thunb.) in southern U.S. forestlands. Forests 3:573–590

    Article  Google Scholar 

  • Wilcox BP, Thurow TL (2006) Emerging issues in rangeland ecohydrology: vegetation change and the water cycle. Rangel Ecol Manag 59:220–224

    Article  Google Scholar 

  • Wilensky U (1999) NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of Taiwan (NSC102-2119-M-002-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Hsuan Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiou, CR., Chen, YJ., Wang, HH. et al. Predicted range expansion of the invasive plant Leucaena leucocephala in the Hengchun peninsula, Taiwan. Biol Invasions 18, 381–394 (2016). https://doi.org/10.1007/s10530-015-1010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-1010-4

Keywords

Navigation