Skip to main content
Log in

Efficient whole-cell biocatalyst for Neu5Ac production by manipulating synthetic, degradation and transmembrane pathways

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To develop a strategy for producing N-acetyl-d-neuraminic acid (Neu5Ac), which is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and pyruvate, but without using pyruvate.

Result

An efficient three-module whole-cell biocatalyst strategy for Neu5Ac production by utilizing intracellular phosphoenolpyruvate was established. In module I, the synthetic pathway was constructed by coexpressing GlcNAc 2-epimerase from Anabaena sp. CH1 and Neu5Ac synthase from Campylobacter jejuni in Escherichia coli. In module II, the Neu5Ac degradation pathway of E. coli was knocked out, resulting in 2.6 ± 0.06 g Neu5Ac l−1 after 72 h in Erlenmeyer flasks. In module III, the transmembrane mode of GlcNAc was modified by disruption of GlcNAc-specific phosphotransferase system and Neu5Ac now reached 3.7 ± 0.04 g l−1. In scale-up catalysis with a 1 l fermenter, the final Neu5Ac yield was 7.2 ± 0.08 g l−1.

Conclusion

A three-module whole-cell biocatalyst strategy by manipulating synthetic, degradation and transmembrane pathways in E. coli was an economical method for Neu5Ac production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Choi YH, Kim JH, Park JH, Lee N, Kim DH, Jang KS, Park IH, Kim BG (2014) Protein engineering of alpha 2,3/2,6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesis. Glycobiology 24:159–169

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, Running JA, Kunesh CA, Song L, Jerrell TA, Rosson RA (2005) Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab Eng 7:201–214

    Article  CAS  PubMed  Google Scholar 

  • El Maarouf A, Petridis AK, Rutishauser U (2006) Use of polysialic acid in repair of the central nervous system. Proc Natl Acad Sci 103:16989–16994

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunawan J, Simard D, Gilbert M, Lovering AL, Wakarchuk WW, Tanner ME, Strynadka NCJ (2005) Structural and mechanistic analysis of sialic acid synthase NeuB from Neisseria meningitidis in complex with Mn2+, phosphoenolpyruvate, and N-acetylmannosaminitol. J Biol Chem 280:3555–3563

    Article  CAS  PubMed  Google Scholar 

  • Lakdawala SS, Jayaraman A, Halpin RA, Lamirande EW, Shih AR, Stockwell TB, Lin X, Simenauer A, Hanson CT, Vogel L, Paskel M, Minai M, Moore I, Orandle M, Das SR, Wentworth DE, Sasisekharan R, Subbarao K (2015) The soft palate is an important site of adaptation for transmissible influenza viruses. Nature 526:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin BX, Zhang ZJ, Liu WF, Dong ZY, Tao Y (2013) Enhanced production of N-acetyl-d-neuraminic acid by multi-approach whole-cell biocatalyst. Appl Microbiol Biotechnol 97:4775–4784

    Article  CAS  PubMed  Google Scholar 

  • Linton D, Karlyshev AV, Hitchen PG, Morris HR, Dell A, Gregson NA, Wren BW (2000) Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol Microbiol 35:1120–1134

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Lee HJ, Strynadka NCJ, Tanner ME (2009) Inhibition of Neisseria meningitidis sialic acid synthase by a tetrahedral intermediate analogue. Biochemistry 48:9194–9201

    Article  CAS  PubMed  Google Scholar 

  • Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    Article  CAS  PubMed  Google Scholar 

  • Song W, Bahn SY, Cha HJ, Pack SP, Choi YS (2016) Recombinant production of a shell matrix protein in Escherichia coli and its application to the biomimetic synthesis of spherulitic calcite crystals. Biotechnol Lett 38:809–816

    Article  CAS  PubMed  Google Scholar 

  • Sundaram AK, Pitts L, Muhammad K, Wu J, Betenbaugh M, Woodard RW, Vann WF (2004) Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from Campylobacter jejuni. Biochem J 383:83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabe-Bordbar S, Marashi S-A (2013) Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism. Biotechnol Lett 35:2039–2044

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Park JT (2004) The N-acetyl-d-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 186:7273–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vann WF, Tavarez JJ, Crowley J, Vimr E, Silver RP (1997) Purification and characterization of the Escherichia coli K1 neuB gene product N-acetylneuraminic acid synthetase. Glycobiology 7:697–701

    Article  CAS  PubMed  Google Scholar 

  • Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B (2012) Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr 3:465S–472S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LB, Zhan XB, Zheng ZY, Wu JR, Gao MJ, Lin CC (2014) A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour Technol 151:120–127

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang C, Xu H, Chen Z, Cai H (2015) Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. J Ind Microbiol Biotechnol 42:1073–1082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (2012AA021505), the National Natural Science Foundation of China No. 31171640, and the Program of Introducing Talents of Discipline to Universities (111-2-06), the Fundamental Research Funds for the Central Universities (JUSRP51504, JUSRP51632A).

Supporting information

Supplementary Table 1—Strains and plasmids used.

Supplementary Table 2—Primers used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobei Zhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Zhan, X., Wu, J. et al. Efficient whole-cell biocatalyst for Neu5Ac production by manipulating synthetic, degradation and transmembrane pathways. Biotechnol Lett 39, 55–63 (2017). https://doi.org/10.1007/s10529-016-2215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2215-z

Keywords

Navigation