Skip to main content
Log in

Enhanced production of  N-acetyl-d-neuraminic acid by multi-approach whole-cell biocatalyst

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

N-Acetyl-d-neuraminic acid (Neu5Ac) has attracted considerable interest due to its promising potential applications in medicine. Significant efforts have been made in whole-cell biocatalyst for Neu5Ac production, but the processes often result in suboptimal performance due to poor expression of enzymes, imbalances of pathway components, disturbance of competing pathways, and barriers of mass transport. In this study, we engineered Escherichia coli strains capable of producing Neu5Ac by assembling a two-step heterologous pathway consisting of N-acetyl-d-glucosamine 2-epimerase (AGE) and Neu5Ac aldolase (NanA). Multiple approaches were used to improve the efficiency of the engineered pathway and process for enhanced Neu5Ac production. Firstly, we identified that NanA was the rate-controlling enzyme in this pathway. With increased expression of NanA, a ninefold increase in Neu5Ac production (65 mM) was observed. Secondly, knocking out nanTEK genes blocked Neu5Ac uptake and the competing pathway, which kept the reactions to the synthetic direction as the final product went outside of the cells and enhanced the Neu5Ac production by threefold, resulting in 173.8 mM of Neu5Ac. Thirdly, we improved the performance of the system by promoting substrate transport and optimizing concentrations of substrates. An overall whole-cell biocatalytic process was developed and a maximum titer of 240 mM Neu5Ac (74.2 g/L) was achieved, with productivity of 6.2 g Neu5Ac/L/h and conversion yield of 40 % from GlcNAc. The engineered strain could be reused for at least five cycles with a productivity of >6 g/L/h. It is a cost-effective process for Neu5Ac production with potential applications in large-scale industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almagro-Moreno S, Boyd EF (2009) Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 9(1):118

    Article  Google Scholar 

  • Álvarez-Añorve LI, Bustos-Jaimes I, Calcagno ML, Plumbridge J (2009) Allosteric regulation of glucosamine-6-phosphate deaminase (NagB) and growth of Escherichia coli on glucosamine. J Bacteriol 191(20):6401–6407

    Article  Google Scholar 

  • Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4, 11-diene. Metab Eng 11(1):13–19

    Article  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(1):1–11

    Google Scholar 

  • Blayer S, Woodley JM, Lilly MD, Dawson MJ (1996) Characterization of the chemoenzymatic synthesis of N-acetyl-d-neuraminic acid (Neu5Ac). Biotechnol Prog 12(6):758–763

    Article  CAS  Google Scholar 

  • Blayer S, Woodley JM, Dawson MJ, Lilly MD (1999) Alkaline biocatalysis for the direct synthesis of N-acetyl-d-neuraminic acid (Neu5Ac) from N-acetyl-d-glucosamine (GlcNAc). Biotechnol Bioeng 66(2):131–136

    Article  CAS  Google Scholar 

  • Boulanger A, Déjean G, Lautier M, Glories M, Zischek C, Arlat M, Lauber E (2010) Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. J Bacteriol 192(6):1487–1497

    Article  CAS  Google Scholar 

  • Brody CN, Lundgren BR (2009) Metabolically engineered Escherichia coli for enhanced production of sialic acid. US Patent (PCT/US2007/079496)

  • Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5(2):163–176

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640

    Article  CAS  Google Scholar 

  • Ferrero M, Aparicio LR (2010) Biosynthesis and production of polysialic acids in bacteria. Appl Microbiol Biotechnol 86(6):1621–1635

    Article  CAS  Google Scholar 

  • Ferrero MA, Reglero A, Fernandez-Lopez M, Ordas R, Rodriguez-Aparicio LB (1996) N-Acetyl-d-neuraminic acid lyase generates the sialic acid for colominic acid biosynthesis in Escherichia coli K1. Biochem J 317(Pt 1):157–165

    CAS  Google Scholar 

  • Fierfort N, Samain E (2008) Genetic engineering of Escherichia coli or the economical production of sialylated oligosaccharides. J Biotechnol 134(3):261–265

    Article  CAS  Google Scholar 

  • Gao C, Xu X, Zhang X, Che B, Ma C, Qiu J, Tao F, Xu P (2011) Chemoenzymatic synthesis of N-acetyl-d-neuraminic acid from N-acetyl-d-glucosamine by using the spore surface-displayed N-acetyl-d-neuraminic acid aldolase. Appl Environ Microbiol 77(19):7080–7083

    Article  CAS  Google Scholar 

  • Hu S, Chen J, Yang Z, Shao L, Bai H, Luo J, Jiang W, Yang Y (2010) Coupled bioconversion for preparation of N-acetyl-d-neuraminic acid using immobilized N-acetyl-d-glucosamine-2-epimerase and N-acetyl-d-neuraminic acid lyase. Appl Microbiol Biotechnol 85(5):1383–1391

    Article  CAS  Google Scholar 

  • Ishikawa M, Koizumi S (2010) Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydr Res 345(18):2605–2609

    Article  CAS  Google Scholar 

  • Kawai N, Ikematsu H, Iwaki N, Maeda T, Kawashima T, Hirotsu N, Kashiwagi S (2009) Comparison of the effectiveness of zanamivir and oseltamivir against influenza A/H1N1, A/H3N2, and B. Clin Infect Dis 48(7):996–997

    Article  Google Scholar 

  • Koketsu M, Juneja LR, Kawanami H, Kim M, Yamamoto T (1992) Preparation of N-acetylneuraminic acid from delipidated egg yolk. Glycoconj J 9(2):70–74

    Article  CAS  Google Scholar 

  • Lee YC, Chien HC, Hsu WH (2007) Production of N-acetyl-d-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase and Escherichia coli N-acetyl-d-neuraminic acid lyase. J Biotechnol 129(3):453–460

    Article  CAS  Google Scholar 

  • Li Y, Yu H, Cao H, Lau K, Muthana S, Tiwari VK, Son B, Chen X (2008) Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl Microbiol Biotechnol 79(6):963–970

    Article  CAS  Google Scholar 

  • Martin JE, Tanenbaum SW, Flashner M (1977) A facile procedure for the isolation of N-acetylneuramic acid from edible bird's-nest. Carbohydr Res 56(2):423

    Article  CAS  Google Scholar 

  • Martinez J, Steenbergen S, Vimr E (1995) Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J Bacteriol 177(20):6005–6010

    CAS  Google Scholar 

  • Maru I, Ohnishi J, Ohta Y, Tsukada Y (1998) Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-d-glucosamine and pyruvate using N-actyl-d-glucosamine 2-epimerase and N-acetylneuraminate lyase. Carbohydr Res 306(4):575–578

    Article  CAS  Google Scholar 

  • Maru I, Ohnishi J, Ohta Y, Tsukada Y (2002) Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-actylglucosamine 2-epimerase. J Biosci Bioeng 93(3):258–265

    CAS  Google Scholar 

  • Plumbridge J, Vimr E (1999) Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol 181(1):47–54

    CAS  Google Scholar 

  • Rodriguez-Aparicio L, Reglero A, Ortiz A, Luengo J (1988) Effect of physical and chemical conditions on the production of colominic acid by Escherichia coli in a defined medium. Appl Microbiol Biotechnol 27(5):474–483

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbour Laboratory, Cold Spring Harbour

    Google Scholar 

  • Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17(7):485–499

    Article  CAS  Google Scholar 

  • Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology 107(1):49–64

    Article  CAS  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expres Purif 41:207–234

    Article  CAS  Google Scholar 

  • Tabata K, Koizumi S, Endo T, Ozaki A (2002) Production of N-acetyl-d-neuraminic acid by coupling bacteria expressing N-acetyl-d-glucosamine 2-epimerase and N-acetyl-d-neuraminic acid synthetase. Enzyme Microb Technol 30(3):327–333

    Article  CAS  Google Scholar 

  • Tanner ME (2005) The enzymes of sialic acid biosynthesis. Bioorg Chem 33(3):216–228

    Article  CAS  Google Scholar 

  • Tao F, Zhang Y, Ma C, Xu P (2010) Biotechnological production and applications of N-acetyl-d-neuraminic acid: current state and perspectives. Appl Microbiol Biotechnol 87(4):1281–1289

    Article  CAS  Google Scholar 

  • Tao F, Zhang Y, Ma C, Xu P (2011) One-pot bio-synthesis: N-acetyl-d-neuraminic acid production by a powerful engineered whole-cell catalyst. Sci Rep 1:1–7

    Article  Google Scholar 

  • Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol R 68(1):132–153

    Article  CAS  Google Scholar 

  • Wang TH, Chen YY, Pan HH, Wang FP, Cheng CH, Lee WC (2009) Production of N-acetyl-d-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins. BMC Biotechnol 9:63

    Article  CAS  Google Scholar 

  • Wu W, Air GM (2004) Binding of influenza viruses to sialic acids: reassortant viruses with A/NWS/33 hem agglutinin bind to α-2, 8-linked sialic acid. Virology 325(2):340–350

    Article  CAS  Google Scholar 

  • Xu X, Gao C, Zhang X, Che B, Ma C, Qiu J, Tao F, Xu P (2011) Production of N-acetyl-d-neuraminic acid by use of an efficient spore surface display system. Appl Environ Microbiol 77(10):3197–3201

    Article  CAS  Google Scholar 

  • Zhan X, Zhu L, Wu J, Zhen Z, Jia W (2002) Production of polysialic acid from fed-batch fermentation with pH control. Biochem Eng J 11(2):201–204

    Article  CAS  Google Scholar 

  • Zhang Y, Tao F, Du M, Ma C, Qiu J, Gu L, He X, Xu P (2010) An efficient method for N-acetyl-d-neuraminic acid production using coupled bacterial cells with a safe temperature-induced system. Appl Microbiol Biotechnol 86(2):481–489

    Article  CAS  Google Scholar 

  • Zimmermann V, Hennemann HG, Daussmann T, Kragl U (2007) Modelling the reaction course of N-acetylneuraminic acid synthesis from N-acetyl-d-glucosamine—new strategies for the optimisation of neuraminic acid synthesis. Appl Microbiol Biotechnol 76(3):597–605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Special Foundation of President of the Chinese Academy of Sciences for Yong Tao (China, Y129011EE1) and Postdoctoral Science Foundation of China for Baixue Lin (China, 2011M500420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, BX., Zhang, ZJ., Liu, WF. et al. Enhanced production of  N-acetyl-d-neuraminic acid by multi-approach whole-cell biocatalyst. Appl Microbiol Biotechnol 97, 4775–4784 (2013). https://doi.org/10.1007/s00253-013-4754-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4754-8

Keywords

Navigation