Skip to main content
Log in

Construction of genetic parts from the Corynebacterium glutamicum genome with high expression activities

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To construct effective genetic expression parts controlling transcription and translation initiation for synthetic biology and heterologous expression in Corynebacterium glutamicum.

Result

Twelve highly expressed genes were identified from the proteomic data of C. glutamicum. Their related sequences were used to construct bicistronic genetic expression parts. Each part contain promoter, 5′-UTR, N-terminal sequence of the source gene and a conserved SD sequence, associated with target gene, forming the bicistronic expression cassette. The enhanced green fluorescent protein (EGFP) expression levels controlled by these novel parts have 1.4 to 790-fold increase in C. glutamicum compared with corresponding promoter-5′-UTR part. One of the bicistronic parts is 1.35 times the EGFP expression of the constitutive-expression pXMJ19. These bicistronic parts had expression advantage compared with conventional promoter-5′-UTR parts.

Conclusion

Various genetic parts for efficient gene expression can be quickly obtained via this new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23:631–640

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Nielsen J (2015) Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 36:8–15

    Article  PubMed  Google Scholar 

  • Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrem ST, Gaal T, Ross W, Gourse RL (1998) Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci USA 95:9761–9766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479

    Article  CAS  PubMed  Google Scholar 

  • Grunberg-Manago M (1999) Messenger RNA stability and its role in control of gene expression in bacteria and phages. Ann Rev Genet 33:193–227

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Wang W, Bower AGW, Collins CH, Koffas MAG (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409

    Article  PubMed  Google Scholar 

  • Hu YD, Wan H, Li JG, Zhou JW (2015) Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. J Ind Microbiol Biotechnol 42:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Huang JF et al (2011) The patterns and expression of KDR in normal tissues of human internal organs. J Mol Histol 42:597–603

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Ngouoto-Nkili CE, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13:437–441

    Article  CAS  Google Scholar 

  • Jang SA, Sung BH, Cho JH, Kim SC (2009) Direct expression of antimicrobial peptides in an intact form by a translationally coupled two-cistron expression system. Appl Environ Microbiol 75:3980–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosuri S et al (2013) Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci USA 110:14024–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin-Karp A et al (2013) Quantifying translational coupling in E. coli synthetic operons using RBS modulation and fluorescent reporters. ACS Synth Biol 2:327–336

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2015) Expression of recombinant protein using Corynebacterium glutamicum: progress, challenges and applications. Crit Rev Biotechnol. doi:10.3109/07388551.2015.1004519

    Google Scholar 

  • Martin JF, Barreiro C, Gonzalez-Lavado E, Barriuso M (2003) Ribosomal RNA and ribosomal proteins in corynebacteria. J Biotechnol 104:41–53

    Article  CAS  PubMed  Google Scholar 

  • Ming YM, Wei ZW, Lin CY, Sheng GY (2010) Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb Cell Fact 9:1

    Article  Google Scholar 

  • Mutalik VK et al (2013a) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10:354

    Article  CAS  PubMed  Google Scholar 

  • Mutalik VK et al (2013b) Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods 10:347

    Article  CAS  PubMed  Google Scholar 

  • Nesvera J, Patek M (2011) Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90:1641–1654

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer-Sancar K, Mentz A, Rueckert C, Kalinowski J (2013) Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genom 14:1. doi:10.1186/1471-2164-14-888

    Article  Google Scholar 

  • Qin XL, Qian JC, Yao GF, Zhuang YP, Zhang SL, Chu J (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77:3600–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR (2014) Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biotechnol 98:2617–2623

    Article  CAS  PubMed  Google Scholar 

  • Schaffer S et al (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22:4404–4422

    Article  CAS  PubMed  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  • Wang J, Ai X, Mei H, Fu Y, Chen B, Yu Z, He J (2013) High-throughput identification of promoters and screening of highly active promoter-5′-UTR DNA region with different characteristics from Bacillus thuringiensis. PLoS One 8:e62960. doi:10.1371/journal.pone.0062960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  CAS  PubMed  Google Scholar 

  • Woo HM, Park J-B (2014) Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. J Biotechnol 180:43–51

    Article  CAS  PubMed  Google Scholar 

  • Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013) Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng 110:2959–2969

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Basic Research Program of China (973 Program) (Grant No. 2013CB733602), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51401A) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20150148).

Supporting information

Supplementary Table 1—Primers used.

Supplementary Table 2—Information about highly expressed genes in C. glutamicum.

Supplementary Fig. 1—Construction process of the probe vector pE-0.

Supplementary Fig. 2—Insertion of fragments guided by Golden Gate method to seamlessly connect genetic expression parts to reporter gene.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuxia Liu or Zhonghu Bai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1981 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Liu, X., Zhang, W. et al. Construction of genetic parts from the Corynebacterium glutamicum genome with high expression activities. Biotechnol Lett 38, 2119–2126 (2016). https://doi.org/10.1007/s10529-016-2196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2196-y

Keywords

Navigation