Skip to main content
Log in

Effective improvement of the activity of membrane-bound alcohol dehydrogenase by overexpression of adhS in Gluconobacter oxydans

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To investigate the roles of adhS, which encodes the AdhS subunit of membrane-bound alcohol dehydrogenase (mADH) in Gluconobacter oxydans DSM2003, and to rationally improve mADH activity.

Results

adhS was identified and overexpressed in G. oxydans DSM2003. Its overexpression promoted the AdhA subunit which serves as the primary dehydrogenase transfer from the periplasmic space to the periplasmic surface of the membrane thereby increasing the amount of active mADH and thus enhancing mADH activity up to 1.96-fold. The increased mADH activity significantly altered product selectivity (glyceric acid/dihydroxyacetone) during glycerol oxidation and increased the glyceric acid production by 7.6-fold. By comparison, overexpression of adhS and adhABS was equally effective in increasing the mADH activity and glyceric acid production.

Conclusions

adhS overexpression effectively improved mADH activity, indicating that for mADH, adhS might be a limiting component. The findings provide a guide for the efficient application of Gluconobacter spp. in hydroxy acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Claret C, Salmon J, Romieu C, Bories A (1994) Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biotechnol 41:359–365

    Article  CAS  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K (2009) Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl Environ Microbiol 75:7760–7766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habe H, Fukuoka T, Morita T, Kitamoto D, Yakushi T, Matsushita K, Sakaki K (2010) Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans. Biosci Biotechnol Biochem 74:1391–1395

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Sunagawa M, Mori A, Imai C, Fukuda M, Takagi M, Yano K (1989) Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti. J Bacteriol 171:3115–3122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Horinouchi S (1997) Characterization of the genes encoding the three-component membrane-bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus. Appl Environ Microbiol 63:1131–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Beppu T, Horinouchi S (1995) Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol 177:5048–5055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Wu J, Liu X, Lin JP, Wei DZ, Chen H (2010) Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Bioresour Technol 101:8294–8299

    Article  CAS  PubMed  Google Scholar 

  • Liebminger S, Hofbauer R, Siebenhofer M, Nyanhongo GS, Guebitz GM (2014) Microbial conversion of crude glycerol to dihydroxyacetone. Waste Biomass Valoriz 5:781–787

    Article  CAS  Google Scholar 

  • Masud U, Matsushita K, Theeragool G (2010) Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108. Int J Food Microbiol 138:39–49

    Article  CAS  PubMed  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Švitel J, Šturdík E (1994) Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. J Ferment Bioeng 78:351–355

    Article  Google Scholar 

  • Toyama H, Fujii A, Matsushita K, Shinagawa E, Ameyama M, Adachi O (1995) Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J Bacteriol 177:2442–2450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei G, Yang X, Gan T, Zhou W, Lin J, Wei D (2009) High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. J Ind Microbiol Biotechnol 36:1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Yang X, Gao K, Lin J, Yang S, Hua Q, Wei D (2010) Characterization of enzymes in the oxidation of 1,2-propanediol to D-(−)-lactic acid by Gluconobacter oxydans DSM 2003. Mol Biotechnol 46:26–33

    Article  CAS  PubMed  Google Scholar 

  • Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Development Program of China (“973” Program; No. 2012CB721003), the Shanghai Natural Science Foundation (No. 15ZR1408600), the National Major Science and Technology Projects of China (No.2012ZX09304009), and the National High Technology Research and Development Program of China (“863” Program; No. 2012AA022201C).

Supporting Information

Supplementary Table 1—Primers used in this study.

Supplementary Figure 1—Nucleotide and amino acid sequences of adhS and upstream promoter in Gluconobacter oxydans DSM 2003.

Supplementary Figure 2—Comparison of amino acid sequences deduced from adhS in four Gluconobacter species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Shi, L., Lin, J. et al. Effective improvement of the activity of membrane-bound alcohol dehydrogenase by overexpression of adhS in Gluconobacter oxydans . Biotechnol Lett 38, 1131–1138 (2016). https://doi.org/10.1007/s10529-016-2084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2084-5

Keywords

Navigation