Skip to main content

Advertisement

Log in

Recent advances in the use of gelatin in biomedical research

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The biomacromolecule, gelatin, has increasingly been used in biomedicine—beyond its traditional use in food and cosmetics. The appealing advantages of gelatin, such as its cell-adhesive structure, low cost, off-the-shelf availability, high biocompatibility, biodegradability and low immunogenicity, among others, have made it a desirable candidate for the development of biomaterials for tissue engineering and drug delivery. Gelatin can be formulated in the form of nanoparticles, employed as size-controllable porogen, adopted as surface coating agent and mixed with synthetic or natural biopolymers forming composite scaffolds. In this article, we review recent advances in the versatile applications of gelatin within biomedical context and attempt to draw upon its advantages and potential challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayre AP, Pawar HA, Khutle NM, Lalitha KG (2014) Polymeric nanoparticles in drug delivery systems critical review and concepts. Int J Pharm Technol 5:2809–2823

    Google Scholar 

  • Bezrukikh A, Esimbekova E, Nemtseva E, Kratasyuk V, Shimomura O (2014) Gelatin and starch as stabilizers of the coupled enzyme system of luminous bacteria NADH: FMN-oxidoreductase-luciferase. Anal Bioanal Chem 406:5743–5747

    Article  CAS  PubMed  Google Scholar 

  • Cheng NC, Chang HH, Tu YK, Young TH (2012) Efficient transfer of human adipose-derived stem cells by chitosan/gelatin blend films. J Biomed Mater Res Part B 100 B:1369–1377

    Article  Google Scholar 

  • Dressler M, Dombrowski F, Simon U, Börnstein J, Hodoroaba VD, Feigl M, Grunow S, Gildenhaar R, Neumann M (2011) Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics. J Eur Ceram Soc 31:523–529

    Article  CAS  Google Scholar 

  • Duan H, Umar S, Xiong R, Chen J (2011) New strategy for expression of recombinant hydroxylated human-derived gelatin in Pichia pastoris KM71. J Agric Food Chem 59:7127–7134

    Article  CAS  PubMed  Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Rel 161:38–49

    Article  CAS  Google Scholar 

  • Farbod K, Nejadnik MR, Jansen JA, Leeuwenburgh SCG (2014) Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. Tissue Eng Part B 20:173–188

    Article  CAS  Google Scholar 

  • Gong Y, Su K, Lau TT, Zhou R, Wang DA (2010) Microcavitary hydrogel-mediating phase transfer cell culture for cartilage tissue engineering. Tissue Eng Part A 16:3611–3622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang Q, Xu H, Cai S, Yang Y (2014) Ultrafine fibrous gelatin scaffolds with deep cell infiltration mimicking 3D ECMs for soft tissue repair. J Mater Sci: Mater Med 25:1789–1800

    CAS  Google Scholar 

  • Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Rel 168:166–178

    Article  CAS  Google Scholar 

  • Kommareddy S, Shenoy DB, Amiji MM (2005) Gelatin nanoparticles and their biofunctionalization. nanotechnologies for the life sciences. Biofunct Nanomater 1:330–352

    Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Coll Surf B 75:1–18

    Article  CAS  Google Scholar 

  • Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC (2014) Silk proteins for biomedical applications: bioeng perspect. Prog Polym Sci 39:251–267

    Article  CAS  Google Scholar 

  • Kuntworbe N, Al-Kassas R (2012) Design and in vitro haemolytic evaluation of cryptolepine hydrochloride-loaded gelatine nanoparticles as a novel approach for the treatment of malaria. AAPS PharmSciTech 13:568–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuntworbe N, Ofori M, Addo P, Tingle M, Al-Kassas R (2013) Pharmacokinetics and in vivo chemosuppressive activity studies on cryptolepine hydrochloride and cryptolepine hydrochloride-loaded gelatine nanoformulation designed for parenteral administration for the treatment of malaria. Acta Trop 127:165–173

    Article  CAS  PubMed  Google Scholar 

  • Lam J, Lowry WE, Carmichael ST, Segura T (2014) Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Adv Funct Mater 24:7053–7062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lau TT, Wang C, Png SW, Su K, Wang DA (2011) Genipin-cross-linked microcarriers mediating hepatocellular aggregates formation and functionalities. J Biomed Mater Res Part A 96 A:204–211

    Article  Google Scholar 

  • Lau TT, Lee LQP, Vo BN, Su K, Wang DA (2012) Inducing ossification in an engineered 3D scaffold-free living cartilage template. Biomaterials 33:8406–8417

    Article  CAS  PubMed  Google Scholar 

  • Li ZF, Li JM, Yan J, Yang ZP, Li X, Yang Q (2013) Prevention of contamination by biopsy needle track contamination using a novel adriamycin-loaded gelatin sponge. World J Surg Oncol 11

  • Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF (2010) Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 30:1204–1210

    Article  CAS  Google Scholar 

  • Ng SS, Su K, Li C, Chan-Park MB, Wang DA, Chan V (2012) Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering. Acta Biomater 8:244–252

    Article  CAS  PubMed  Google Scholar 

  • Ozkizilcik A, Tuzlakoglu K (2014) A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds. J Tiss Eng Regen Med 8:242–247

    Article  CAS  Google Scholar 

  • Park H, Woo EK, Lee KY (2014) Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. J Control Rel 196:146–153

    Article  CAS  Google Scholar 

  • Perez RA, Del Valle S, Altankov G, Ginebra MP (2011) Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. J Biomed Mater Res Part B 97 B:156–166

    Article  Google Scholar 

  • Ródenas-Rochina J, Ribelles JLG, Lebourg M (2013) Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci: Mater Med 24:1293–1308

    Google Scholar 

  • Ruggeri RR, Bressan FF, Siqueira NM, Meirelles F, Frantz N, Watanabe YF, Soares RMD, Bos-Mikich A (2014) Derivation and culture of putative parthenogenetic embryonic stem cells in new gelatin substrates modified with galactomannan. Macromol Res 22:1053–1058

    Article  CAS  Google Scholar 

  • Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP (2010) Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm 385:143–149

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y (2014) The in vitro research of bacterial invasion of prosthetic vascular grafts: comparison of elastomer-sealed and gelatin-coated Dacron vascular grafts. Surg Today 44:1542–1547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva R, Fabry B, Boccaccini AR (2014) Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 35:6727–6738

    Article  CAS  PubMed  Google Scholar 

  • Su K, Gong Y, Wang C, Wang DA (2011) A novel shell-structure cell microcarrier (SSCM) for cell transplantation and bone regeneration medicine. Pharm Res 28:1431–1441

    Article  CAS  PubMed  Google Scholar 

  • Su K, Lau TT, Leong W, Gong Y, Wang DA (2012) Creating a living hyaline cartilage graft free from non-cartilaginous constituents: an intermediate role of a biomaterial scaffold. Adv Funct Mater 22:972–978

    Article  CAS  Google Scholar 

  • Tang G, Zhang H, Zhao Y, Li X, Yuan X, Wang M (2012a) Prolonged release from PLGA/HAp scaffolds containing drug-loaded PLGA/gelatin composite microspheres. J Mater Sci Mater Med 23:419–429

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Zhang H, Zhao Y, Zhang Y, Li X, Yuan X (2012b) Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen. J Biomater Sci Polym Ed 23:2241–2257

    CAS  PubMed  Google Scholar 

  • Toh WS, Loh XJ (2015) Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C 45:690–697

    Article  Google Scholar 

  • Ulrich D, Edwards SL, Su K, Tan KS, White JF, Ramshaw JAM, Lo C, Rosamilia A, Werkmeister JA, Gargett CE (2014) Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng Part A 20:785–798

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wan ACA, Tai BCU (2013) CHITIN - A promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv 31:1776–1785

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Boerman OC, Sariibrahimoglu K, Li Y, Jansen JA, Leeuwenburgh SCG (2012) Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase. Biomaterials 33:8695–8703

    Article  CAS  PubMed  Google Scholar 

  • Won YW, Yoon SM, Sonn CH, Lee KM, Kim YH (2011) Nano self-assembly of recombinant human gelatin conjugated with α-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano 5:3839–3848

    Article  CAS  PubMed  Google Scholar 

  • Won YW, Yoon SM, Lim KS, Kim YH (2012) Self-assembled nanoparticles with dual effects of passive tumor targeting and cancer-selective anticancer effects. Adv Funct Mater 22:1199–1208

    Article  CAS  Google Scholar 

  • Xu J, Xia Y, Qiao CD, Zhu W, Wang Y, Li TD (2014) Solid-state structure of gelatin-mono epoxy terminated polydimethylsiloxane polymer: Effect of electrostatic and hydrophobic interactions. Coll Surf B 123:945–950

    Article  CAS  Google Scholar 

  • Zhang F, Xu S, Wang Z (2011) Pre-treatment optimization and properties of gelatin from freshwater fish scales. Food Bioprod Proc 89:185–193

    Article  CAS  Google Scholar 

  • Zhang Q, Neoh KG, Xu L, Lu S, Kang ET, Mahendran R, Chiong E (2014) Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. Langmuir 30:6151–6161

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Du S, Kafi A, Fox B, Li JL, Liu XY, Rajkhowa R, Wang XG (2015) Surface energy of silk fibroin and mechanical properties of silk cocoon composites. RSC Adv 5:1640–1647

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CW gratefully thanks the funding supports from the Macao Scientific and Technology Development Fund (FDCT) grant 116/2012/A, the University of Macau Research Grants (MYRG2014-00069-ICMS-QRCM and MRG018/WCM/2013/ICMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, K., Wang, C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37, 2139–2145 (2015). https://doi.org/10.1007/s10529-015-1907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1907-0

Keywords

Navigation