Skip to main content
Log in

Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To improve the stability of E. coli-produced non-glycosylated fungal FAd-glucose dehydrogenase induced a disulfide bond by site-directed mutagenesis based on structural comparisons with glucose oxidases.

Results

The FAD-glucose dehydrogenase (GDH) mutant Val149Cys/Gly190Cys, which was constructed based on a comparison with the three dimensional structure of glucose oxidase, showed a 110 min half-life of thermal inactivation at 45 °C, which is 13-fold greater than that of the wild-type enzyme. The considerable increase in thermal stability was further supported by Eyring plot analysis. The kinetic parameters of Val149Cys/Gly190Cys (k cat = 760 s−1, Km = 35 mM, and catalytic efficiency (k cat/Km) = 22 s−1 mM−1) were almost identical to those of the wild-type enzyme (k cat = 780 s−1, Km = 35 mM, k cat/Km = 22 s−1 mM−1). The substrate specificity of Val149Cys/Gly190Cys is indistinguishable from that of the wild type.

Conclusion

The constructed mutant, Val149Cys/Gly190Cys, had significantly increased structural stability without changing the catalytic activity and kinetic parameters of FAD-GDH, including its characteristic substrate specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bak TG (1967a) Studies on glucose dehydrogenase of Aspergillus oryzae. II. Purification and physical and chemical properties. Biochim Biophys Acta 139:277–293

    Article  CAS  PubMed  Google Scholar 

  • Bak TG (1967b) Studies on glucose dehydrogenase of Aspergillus oryzae. III. General enzymatic properties. Biochim Biophys Acta 146:317–327

    Article  CAS  PubMed  Google Scholar 

  • Bak TG, Sato R (1967a) Studies on the glucose dehydrogenase of Aspergillus oryzae. I. Induction of its synthesis by rho-benzoquinone and hydroquinone. Biochim Biophys Acta 139:265–276

    Article  CAS  PubMed  Google Scholar 

  • Bak TG, Sato R (1967b) Studies on glucose dehydrogenase of Aspergillus oryzae. IV. Histidyl residue as an active site. Biochim Biophys Acta 146:328–335

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96:13703–13708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  • Fernandez IS, Ruiz-Duenas FJ, Santillana E, Ferreira P, Martinez MJ, Martinez AT, Romero A (2009) Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Acta Crystallogr D Biol Crystallogr 65:1196–1205

    Article  CAS  PubMed  Google Scholar 

  • Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5:1068–1076

    Article  PubMed Central  PubMed  Google Scholar 

  • Gouda MD, Singh SA, Rao AGA, Thakur MS, Karanth NG (2003) Thermal inactivation of glucose oxidase. J Biol Chem 278:24324–24333

    Article  CAS  PubMed  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hallberg BM, Henriksson G, Pettersson G, Divne C (2002) Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J Mol Biol 315:421–434

    Article  CAS  PubMed  Google Scholar 

  • Macheroux P (1999) UV-visible spectroscopy as a tool to study flavoproteins. Methods Mol Biol 131:1–7

    CAS  PubMed  Google Scholar 

  • Mori K, Nakajima M, Kojima K, Murakami K, Ferri S, Sode K (2011) Screening of Aspergillus-derived FAD-glucose dehydrogenases from fungal genome database. Biotechnol Lett 33:2255–2263

    Article  CAS  PubMed  Google Scholar 

  • Müller HM (1977) Gluconsäure bildende Enzyme bei Aspergillus niger. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 132:14–24

    PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Ogura Y (1951) Studies on the glucose dehydrogenase of Aspergillus oryzae. J Biochem 38:75–84

    CAS  Google Scholar 

  • Ogura Y, Nagahisa M (1937) Untersuchungen über die Atmung und die Dehydrasesysteme von Aspergillus oryzae. Bot Mag Tokyo 51:597–612

    Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Rerrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Piumi F, Levasseur A, Navarro D, Zhou S, Mathieu Y, Ropartz D, Ludwig R, Faulds CB, Record E (2014) A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Appl Microbiol Biotechnol 98:10105–10118

    Article  CAS  PubMed  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  • Sygmund C, Klausberger M, Felice AK, Ludwig R (2011a) Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity. Microbiology 157:3203–3212

    Article  CAS  PubMed  Google Scholar 

  • Sygmund C, Staudigl P, Klausberger M, Pinotsis N, Djinovic-Carugo K, Gorton L, Haltrich D, Ludwig R (2011b) Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Microb Cell Fact 10:106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsujimura S, Kojima S, Kano K, Ikeda T, Sato M, Sanada H, Omura H (2006) Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Biosci Biotechnol Biochem 70:654–659

    Article  CAS  PubMed  Google Scholar 

  • Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht HJ (1999) 1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr D Biol Crystallogr 55:969–977

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Huang L, Wang J, Wang X, Xu Z (2014) Efficient expression, purification and characterization a novel FAD-dependent glucose dehydrogenase from Aspergillus terreus in Pichia pastoris. J Microbiol Biotechnol 24:1516–1524

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Stefano Ferri for kindly proofreading and revising the manuscript.

Supporting information

Supplementary Table 1 – Specific activities and thermal stabilities of crude enzyme preparations. Supplementary Figure 1 – The nucleotide sequence of the wild-type FAD-GDH gene. Supplementary Figure 2 – SDS-PAGE analysis of expressed wild-type and mutant FAD-GDHs. Supplementary Figure 3 – Amino acid sequence alignment of glucose oxidases and putative glucose dehydrogenases. Supplementary Figure 4 – Tertiary structure comparison of FAD-GDH with AAOx and flavin domain of CDH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sode.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10529_2015_1774_MOESM1_ESM.pptx

Supplementary Figure 1. The nucleotide sequence of the wild-type FAD-GDH gene. The native gene sequence encoding the preprotein (native) is aligned with the codon-optimized gene used in this study, after deletion of the signal sequence and addition of NdeI and HindIII restriction sites (modified). (PPTX 120 kb)

10529_2015_1774_MOESM2_ESM.pptx

Supplementary Figure 2. SDS-PAGE analysis of expressed wild-type and mutant FAD-GDHs. Molecular weight marker (lane M), soluble fractions (odd lanes) and insoluble fractions (even lanes) of wild type (lanes 1 and 2), Val149Cys/Gly190Cys (lanes 3 and 4) were separated on a 10-20% polyacrylamide gel. (PPTX 74 kb)

10529_2015_1774_MOESM3_ESM.pptx

Supplementary Figure 3. Amino acid sequence alignment of glucose oxidases and putative glucose dehydrogenases. The sequences were aligned using ClustalW. Arrows indicate cysteine residues conserved among glucose oxidases. The putative proteins were previously annotated [8]. Glucose oxidases: A. niger GOx (1CF3 and CAC12802), A. oryzae RIB40 GOx (XP_001727544), P. amagasakiense GOx (1GPE), and A. terreus NIH2624 GOx precursor (XP_001216461). Putative glucose dehydrogenases: A. flavus NRRL3357 putative GOx (AFL599), A. niger CBS 513.88 GOx (XP_001391138 and XP_001394544), A. flavus NRRL3357 putative choline dehydrogenase (XP_002385256), and A. carbonarius ITEM 5010 jgi|Aspca1|33771|fgenesh1_pg.00771_#_19 (Aspca1 33771). (PPTX 272 kb)

10529_2015_1774_MOESM4_ESM.pptx

Supplementary Figure 4. Tertiary structure comparison of FAD-GDH with AAOx and flavin domain of CDH. Overall structures of (a) flavin domain of CDH (PDB ID: 1KDG), (b) AAOx (PDB ID: 3FIM), and (c) FAD-GDH (model structure). The regions around the disulfide bonds in AAOx and flavin domain of CDH, and the corresponding regions in the FAD-GDH structural model, are indicated with red frames. Figures were generated using UCSF Chimera. (PPTX 2311 kb)

Supplementary material 5 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, G., Kojima, K., Mori, K. et al. Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond. Biotechnol Lett 37, 1091–1099 (2015). https://doi.org/10.1007/s10529-015-1774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1774-8

Keywords

Navigation