Skip to main content
Log in

Conditioned medium from mesenchymal stem cells enhances the migration of hepatoma cells through CXCR4 up-regulation and F-actin remodeling

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Interactions between tumors and mesenchymal stem cells (MSCs) can regulate cancer cell behavior and cancer progression. Rat bone marrow-derived MSCs (rMSCs) were isolated and purified by Percoll density gradient centrifugation. Conditioned media from rMSCs (MSC-CM) was prepared, and its role in cancer cell migration and the underlying molecular mechanism were investigated. MSC-CM increased the migration and up-regulated the expression of CXC chemokine receptor 4 (CXCR4) in rat hepatoma cells (CBRH-7919). F-actin remodeling was observed, and the Young’s modulus was decreased in CBRH-7919 cells. A CXCR4 inhibitor suppressed the MSC-CM-induced CXCR4 expression and migration, restored the decrease in the Young’s modulus and disrupted the formation of F-actin. MSC-CM thus promotes CBRH-7919 cell migration by lessening cell stiffness and increasing F-actin formation through up-regulation of CXCR4 expression. MSC-CM may therefore have a positive impact on cancer metastases and underlines a potential safety issue associated with clinical applications of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bergfeld SA, DeClerck YA (2010) Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 29:249–261

    Article  PubMed  Google Scholar 

  • Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noël A, Brook G, Schoenen J, Franzen R (2013) Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 8:e69515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

  • Cousin B, Ravet E, Poglio S, De Toni F, Bertuzzi M, Lulka H, Touil I, André M, Grolleau JL, Péron JM, Chavoin JP, Bourin P, Pénicaud L, Casteilla L, Buscail L, Cordelier P (2009) Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4:e6278

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuiffo BG, Karnoub AE (2012) Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr 6:220–230

    Article  PubMed Central  PubMed  Google Scholar 

  • Dimarino AM, Caplan AI, Bonfield TL (2013) Mesenchymal stem cells in tissue repair. Front Immunol 4:201

    Article  PubMed Central  PubMed  Google Scholar 

  • Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844

    Article  CAS  PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, Inflammation, and Cancer. Cell 140:883–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Ivanova-Todorova E, Bochev I, Dimitrov R, Belemezova K, Mourdjeva M, Kyurkchiev S, Kinov P, Altankova I, Kyurkchiev D (2012) Conditioned medium from adipose tissue-derived mesenchymal stem cells induces CD4+FOXP3+ cells and increases IL-10 secretion. J Biomed Biotechnol 2012:295167

    Article  PubMed Central  PubMed  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 449:557–563

    Article  CAS  PubMed  Google Scholar 

  • Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29:11–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landry Y, Le O, Mace KA, Restivo TE, Beauséjour CM (2010) Secretion of SDF-1 alpha by bone marrow-derived stromal cells enhances skin wound healing of C57BL/6 mice exposed to ionizing radiation. J Cell Mol Med 14:1594–1604

    Article  CAS  PubMed  Google Scholar 

  • Li QS, Lee GY, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):609–613

    Article  CAS  PubMed  Google Scholar 

  • Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N, Jia HL, Shi J, Wu JC, Dai C, Dong QZ, Qin LX (2010) Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci 101:2546–2553

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Song G, Song Y, Xu B, Qin J, Shi Y (2009) Indirect coculture with tenocyte promotes the proliferation and mRNA expression of tendon/ligament related genes in mesenchymal stem cells. Cytotechnology 61:1–10

    Article  PubMed Central  PubMed  Google Scholar 

  • Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, O’Brien W, Raz E, Littman D, Wylie C, Lehmann R (2003) The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130:4279–4286

    Article  CAS  PubMed  Google Scholar 

  • Oh MJ, Kuhr F, Byfield F, Levitan I (2012) Micropipette aspiration of substrate-attached cells to estimate cell stiffness. J Vis Exp 67:3886

    PubMed  Google Scholar 

  • Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M (2012) Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 18:1479–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J (2009) Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 113:4197–4205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer TD, Ashby WJ, Lewis JD, Zijlstra A (2011) Targeting tumor cell motility to prevent metastasis. Adv Drug Deliv Rev 63:568–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Prantl L, Muehlberg F, Navone NM, Song YH, Vykoukal J, Logothetis CJ, Alt EU (2010) Adipose tissue-derived stem cells promote prostate tumor growth. Prostate 70:1709–1715

    Article  CAS  PubMed  Google Scholar 

  • Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, Ye L, Zhang X (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18:500–507

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Luo Q, Zhang BY, Shi YS, Song GB (2013) Conditioned medium from hepatocellular carcinoma cells promotes mesenchymal stem cells migration through CXCR4-ERK1/2 signal pathway. J Biol Res-Thessalon 20:259–269

    Google Scholar 

  • Roorda BD, At Elst, Boer TG, Kamps WA, de Bont ES (2010) Mesenchymal stem cells contribute to tumor cell proliferation by direct cell-cell contact interactions. Cancer Invest 28:526–534

    Article  CAS  PubMed  Google Scholar 

  • Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15:730–738

    Article  CAS  PubMed  Google Scholar 

  • Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4:e4992

    Article  PubMed Central  PubMed  Google Scholar 

  • Spinello I, Quaranta M, Riccioni R et al (2011) MicroRNA-146a and AMD3100, two ways to control CXCR4 expression in acute myeloid leukemias. Blood Cancer J 1:e26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timmers Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6:206–214

    Article  PubMed  Google Scholar 

  • Wong RS (2011) Mesenchymal stem cells: angels or demons? J Biomed Biotechnol 2011:459510

    PubMed Central  PubMed  Google Scholar 

  • Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, Koc ON, Penn MS (2007) SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes aftermyocardial infarction. FASEB J 21:3197–3207

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G (2013) Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther 4:70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Luo Q, Mao X, Xu B, Yang L, Ju Y, Song G (2014) A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway. Exp Cell Res 322:208–216

    Article  CAS  PubMed  Google Scholar 

  • Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD (2013) Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 95:2235–2245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 11032012, 11102240, and 11272365), the 111 Project (No. 06023), the Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology (Chongqing University), the Ministry of Education of China (No. CQKLBST-2012-008), and the Research Fund for the Doctoral Program of Higher Education of China (No. 20130191110029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanbin Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Luo, Q., Sun, J. et al. Conditioned medium from mesenchymal stem cells enhances the migration of hepatoma cells through CXCR4 up-regulation and F-actin remodeling. Biotechnol Lett 37, 511–521 (2015). https://doi.org/10.1007/s10529-014-1710-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1710-3

Keywords

Navigation