Skip to main content
Log in

Two natural glucomannan polymers, from Konjac and Bletilla, as bioactive materials for pharmaceutical applications

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Next-generation biomaterials are expected to possess both desirable mechanical features and unique biological functions. Recently, two plant-derived glucomannans (GMs)—Konjac glucomannan (KGM) and the polysaccharide of Bletilla striata (BSP)—have emerged as new sources for development of biomaterials. They have been fabricated into drug delivery vehicles and wound healing dressings in varying shapes and sizes, and demonstrated strong gelling properties, high biocompatibility and remarkable convenience for processing and modification. Notably, they demonstrate bioactivities such as response to enzymes produced in special biological niches and/or affinity for carbohydrate receptors on specific cells. All these mechanical and biological advantages suggest these two GMs have great potential for future development and broader application in various biomedical and pharmaceutical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Mancenido F, Landin M, Martinez-Pacheco R (2008) Konjac glucomannan/xanthan gum enzyme sensitive binary mixtures for colonic drug delivery. Eur J Pharm Biopharm 69:573–581

    Article  CAS  PubMed  Google Scholar 

  • Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153:347–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196:407–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Case SE, Knopp JA, Hamann DD, Schwartz SJ (1992) Characterisation of gelation of konjac mannan using lyotropic salts and rheological measurements. In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilisers for the food industry 6. IRL Press at Oxford University Press, Oxford, pp 489–500

    Google Scholar 

  • Censi R, Di Martino P, Vermonden T, Hennink WE (2012) Hydrogels for protein delivery in tissue engineering. J Cont Rel 161:680–692

    Article  CAS  Google Scholar 

  • Cescutti P, Campa C, Delben F, Rizzo R (2002) Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac. Carbohydr Res 337:2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Chen HL, Cheng HC, Liu YJ, Liu SY, Wu WT (2006) Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition 22:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liu D, Shi B, Wang H, Cheng Y, Zhang W (2013) Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology. Carbohydr Polym 93:81–88

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang S, Lu M, Chen Y, Zhao L, Li W, Yuan Q, Norde W, Li Y (2014) Formation and characterization of light-responsive TEMPO-oxidized Konjac glucomannan microspheres. Biomacromolecules 15:2166–2171

    Article  CAS  PubMed  Google Scholar 

  • Chua M, Baldwin TC, Hocking TJ, Chan K (2010) Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex NE Br. J Ethnopharmacol 128:268–278

    Article  Google Scholar 

  • Dea I, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Biochem 31:241–312

    Article  CAS  Google Scholar 

  • Diao H, Li X, Chen J, Luo Y, Chen X, Dong L, Wang C, Zhang C, Zhang J (2008) Bletilla striata polysaccharide stimulates inducible nitric oxide synthase and proinflammatory cytokine expression in macrophages. J Biosci Bioeng 105:85–89

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Xia S, Luo Y, Diao H, Zhang J, Chen J, Zhang J (2009) Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-alpha. J Cont Rel 134:214–220

    Article  CAS  Google Scholar 

  • Du XZ, Li J, Chen J, Li B (2012) Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Res Int 46:270–278

    Article  CAS  Google Scholar 

  • Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD (1988) Measurement of gastrointestinal pH profiles in normal ambulant human-subjects. Gut 29:1035–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan J, Wang K, Liu M, He Z (2008) In vitro evaluations of Konjac glucomannan and xanthan gum mixture as the sustained release material of matrix tablet. Carbohydr Polym 73:241–247

    Article  CAS  Google Scholar 

  • Fan L, Cheng C, Qiao Y, Li F, Li W, Wu H, Ren B (2013) GNPs-CS/KGM as hemostatic first aid wound dressing with antibiotic effect: in vitro and in vivo study. PLoS ONE 8:e66890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D (2013) GLOBOCAN 2012: Estimated cancer incidence, motality and prevalence worldwide in 2012. World Health Organization. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed 02 June 2014

  • Frank J, Born K, Barker JH, Marzi I (2003) In vivo effect of tumor necrosis factor alpha on wound angiogenesis and epithelialization. Eur J Trauma 29:208–219

    Article  Google Scholar 

  • Fràter-Schröder M, Risau W, Hallmann R, Gautschiand P, Böhlen P (1987) Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 84:5277–5281

    Article  PubMed Central  PubMed  Google Scholar 

  • Gong Y, Wang C, Lai R, Su K, Zhang F, Wang DA (2009) An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem 19:1968–1977

    Article  CAS  Google Scholar 

  • Goodridge HS, Reyes CN, Becker CA, Katsumoto TR et al (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472:471–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greaves NS, Ashcroft KJ, Baguneid M, Bayat A (2013) Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci 72:206–217

    Article  CAS  PubMed  Google Scholar 

  • Ha W, Wu H, Wang XL, Peng SL, Ding LS, Zhang S, Li BJ (2011) Self-aggregates of cholesterol-modified carboxymethyl Konjac glucomannan conjugate: preparation, characterization, and preliminary assessment as a carrier of etoposide. Carbohydr Polym 86:513–519

    Article  CAS  Google Scholar 

  • Hardwicke J, Schmaljohann D, Boyce D, Thomas D (2008) Epidermal growth factor therapy and wound healing—past, present and future perspectives. Surgeon 6:172–177

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Yang Z, Wang G, Chen J (2013) Structural characterization and in vitro antiviral activity of oligo-glucomannan sulfate prepared from Amorphophallus konjac. J Pure Appl Microbiol 7:711–717

    CAS  Google Scholar 

  • Jansen K, van der Werff JF, van Wachem PB, Nicolai JP, de Leij LF, van Luyn MJ (2004) A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials 25:483–489

    Article  CAS  PubMed  Google Scholar 

  • Katsuraya K, Okuyama K, Hatanaka K, Oshima R, Sato T, Matsuzaki K (2003) Constitution of Konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym 53:183–189

    Article  CAS  Google Scholar 

  • Korkiatithaweechai S, Umsarika P, Praphairaksit N, Muangsin N (2011) Controlled release of diclofenac from matrix polymer of chitosan and oxidized konjac glucomannan. Mar Drugs 9:1649–1663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin J, Lu C, Hu J, Chen Y, Huang C, Lou C (2012) Property evaluation of Bletilla striata/polyvinyl alcohol nano fibers and composite dressings. J Nanomater 2012:1–7

    Google Scholar 

  • Liu BS, Huang TB, Yao CH, Fang SS, Chang CJ (2009) Novel wound dressing of non-woven fabric coated with genipin-crosslinked chitosan and Bletilla striata herbal extract. J Med Biol Eng 29:60–67

    Google Scholar 

  • Liu C, Chen Y, Chen J (2010) Synthesis and characteristics of pH-sensitive semi-interpenetrating polymer network hydrogels based on konjac glucomannan and poly(aspartic acid) for in vitro drug delivery. Carbohydr Polym 79:500–506

    Article  CAS  Google Scholar 

  • Liu J, Zhang L, Hu W, Tian R, Teng Y, Wang C (2012) Preparation of konjac glucomannan-based pulsatile capsule for colonic drug delivery system and its evaluation in vitro and in vivo. Carbohydr Polym 87:377–382

    Article  CAS  Google Scholar 

  • Luo Y, Diao H, Xia S, Dong L, Chen J, Zhang J (2010) A physiologically active polysaccharide hydrogel promotes wound healing. J Biomed Mater Res A 94:193–204

    Article  PubMed  Google Scholar 

  • Maekaji K, Kawamura D (1984) Relationship between stress relaxation and syneresis of konjac mannan gel. Agric Biol Chem 48:227–228

    Article  CAS  Google Scholar 

  • Manjanna KM, Kumar P, Shivakumar B (2010) Natural polysaccharide hydrogels as novel excipients for modified drug delivery systems: a review. Int J Chem Tech Res 2:509–525

    CAS  Google Scholar 

  • Matthijsen RA, de Winther MPJ, Kuipers D, van der Made I, Weber C, Herias MV, Gijbels MJJ, Buurman WA (2009) Macrophage-specific expression of mannose-binding lectin controls atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 119:2188–2195

    Article  CAS  PubMed  Google Scholar 

  • Mladenovska K (2012) Drug and cell delivery systems in the treatment of colitis. Colitis. doi:10.5772/25677

  • Murali S, Rai B, Dombrowski C, Lee J et al (2013) Affinity-selected heparan sulfate for bone repair. Biomaterials 34:5594–5605

    Article  CAS  PubMed  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel PK, Satwara RS, Pandya SS (2012) Bacteria aided biopolymers as carriers for colon specific drug delivery system: a review. Int J PharmTech Res 4:1194–1214

    Google Scholar 

  • Ratcliffe I, Williams PA, Viebke C, Meadows J (2005) Physicochemical characterization of Konjac glucomannan. Biomacromolecules 6:1977–1986

    Article  CAS  PubMed  Google Scholar 

  • Shahbuddin M, Shahbuddin D, Bullock AJ, Ibrahim H, Rimmer S, MacNeil S (2013) High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes. Carbohydr Res 375:90–99

    Article  CAS  PubMed  Google Scholar 

  • Shahbuddin M, Bullock AJ, MacNeil S, Rimmer S (2014) Glucomannan-poly(N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem B 2:727–738

    Article  CAS  Google Scholar 

  • Taylor ME, Drickamer K (1993) Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor. J Biol Chem 268:399–404

    CAS  PubMed  Google Scholar 

  • Venkatrajah B, Malathy VV, Elayarajah B, Rajendran R, Rammohan R (2012) Biopolymer and Bletilla striata herbal extract coated cotton gauze preparation for wound healing. J Med Sci 12:148–160

    Article  CAS  Google Scholar 

  • Wang C, Gong Y, Lin Y, Shen J, Wang DA (2008) A novel gellan gel-based microcarrier for anchorage-dependent cell delivery. Acta Biomater 4:1226–1234

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Gong Y, Zhong Y, Yao Y, Su K, Wang DA (2009) The control of anchorage-dependent cell behavior within a hydrogel/microcarrier system in an osteogenic model. Biomaterials 30:2259–2269

    Article  PubMed  Google Scholar 

  • Wang C, Poon S, Murali S, Koo C et al (2014a) Engineering a vascular endothelial growth factor 165-binding heparan sulfate for vascular therapy. Biomaterials 35:6776–6786

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Sun J, Luo Y, Xue W, Diao H, Dong L, Chen J, Zhang J (2006) A polysaccharide isolated from the medicinal herb Bletilla striata induces endothelial cells proliferation and vascular endothelial growth factor expression in vitro. Biotechnol Lett 28:539–543

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Xu M, Zhu YP, Qiao Y, Liang TT (2011) Study on shear rheological behavior of konjac glucomannan. Appl Mech Mater 52–54:1332–1335

    Article  Google Scholar 

  • Wang J, Liu C, Shuai Y, Cui X, Nie L (2014b) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in Konjac glucomannan/sodium alginate hydrogels. Colloid Surface B 113:223–229

    Article  CAS  Google Scholar 

  • Wang Y, Liu D, Chen S, Wang Y, Jiang H, Yin H (2014c) A new glucomannan from Bletilla striata: structural and anti-fibrosis effects. Fitoterapia 92:72–78

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Cao X, Yin Z, Wang T, Zhao C (2009) Preparation and characterization of Konjac glucomannan–poly (acrylic acid) IPN hydrogels for controlled release. Carbohydr Polym 78:193–198

    Article  CAS  Google Scholar 

  • Xiang Y, Ye Q, Li W, Xu W, Yang H (2014) Preparation of wet-spun polysaccharide fibers from Chinese medicinal Bletilla striata. Mater Lett 117:208–210

    Article  CAS  Google Scholar 

  • Yu H, Xiao C (2008) Synthesis and properties of novel hydrogels from oxidized Konjac glucomannan crosslinked gelatin for in vitro drug delivery. Carbohydr Polym 72:479–489

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grant from the Macao Science and Technology Development Fund (FDCT/048/2013/A2) and the University of Macau Research Grant (MRG006/WCM/2014/ICMS) to C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, J., Li, Q. et al. Two natural glucomannan polymers, from Konjac and Bletilla, as bioactive materials for pharmaceutical applications. Biotechnol Lett 37, 1–8 (2015). https://doi.org/10.1007/s10529-014-1647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1647-6

Keywords

Navigation