Skip to main content
Log in

Probing the bioethanol production potential of Scheffersomyces (Pichia) stipitis using validated genome-scale model

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A detailed in silico analysis of different strategies for enhancement of bioethanol production by Scheffersomyces stipitis, = Pichia stipitis, using validated genome-scale metabolic model is presented. Glucose inhibition on xylose uptake is dominant in S. stipitis which makes fed-batch fermentation more effective for higher sugar concentrations. Bioethanol production potential of S. stipitis can be improved by growth media modification by introducing certain amino acids in small quantities. Slower sugar uptake by S. stipitis can be overcome by community-culture with recombinant Escherichia coli strain ZSC113, which has a higher xylose uptake rate. Ethanol yield and productivity of community-culture can be further enhanced by genetic modification of E. coli strain ZSC113.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Matrix of stoichiometric coefficients

a :

Specific interfacial air–liquid area, m−1

E :

Ethanol concentration g l−1

e:

Ethanol

EC:

Escherichia coli

F :

Feed rate l h−1

G :

Glucose concentration g l−1

G f :

Glucose concentration in the feed g l−1

g:

Glucose

K :

Half-saturation constant for substrate uptake g l−1

K ie :

Ethanol inhibition constant for substrate uptake g l−1

K igz :

Glucose inhibition constant for xylose uptake g l−1

k L :

O2 mass transfer coefficient m h−1

O :

Dissolved O2 concentration g l−1

o:

O2

SS:

Scheffersomyces stipitis

V :

Volume l

v :

Vector of reaction and exchange fluxes

w :

Vector of weights with contribution of flux to cell mass formation

X :

Cell mass concentration g l−1

Z :

Xylose concentration g l−1

z:

Xylose

Z f :

Xylose concentration in the feed g l−1

µ :

Specific growth rate h−1

References

  • Agbogbo FK, Coward-Kelly G, Torry-Smith M et al (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Proc Biochem 41:2333–2336

    Article  CAS  Google Scholar 

  • Balagurunathan B, Jonnalagadda S, Tan L et al (2012) Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact 11:27

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2:727–738

    Article  PubMed  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Grootjen DRJ, van der Lans RGJM, Luyben KCAM (1991) Conversion of glucose/xylose mixtures by Pichia stipitis under O2-limited conditions. Enzyme Microb Technol 13:648–654

    Article  CAS  Google Scholar 

  • Gutierrez-Rivera B, Waliszewski-Kubiak K, Carvajal-Zarrabal O et al (2012) Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. J Chem Technol Biotechnol 87:263–270

    Article  CAS  Google Scholar 

  • Hanly TJ, Henson MA (2013) Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol Biofuels 6:44

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hanly TJ, Urello M, Henson MA (2012) Dynamic flux balance modelling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Microbiol Biotechnol 93:2529–2541

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Reed JL (2010) OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst Biol 4:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisha KP, Sarkar D (2014) Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production. Bioprocess Biosyst Eng 37:617–627

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan R, Edwards JS, Doyle FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Slininger PJ, Dien BS, Gorsich SW et al (2006) Nitrogen source and mineral optimization enhance D-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol 72:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Tohma T, Itaya T et al (1997) Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory deficient mutant of Saccharomyces cerevisiae. J Ferment Bioeng 83:364–370

    Article  CAS  Google Scholar 

  • Unrean P, Nguyen NHA (2013) Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Appl Biochem Biotechnol 169:1895–1909

    Article  PubMed  CAS  Google Scholar 

  • Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT13) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sarkar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parambil, L.K., Sarkar, D. Probing the bioethanol production potential of Scheffersomyces (Pichia) stipitis using validated genome-scale model. Biotechnol Lett 36, 2443–2451 (2014). https://doi.org/10.1007/s10529-014-1629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1629-8

Keywords

Navigation