Skip to main content
Log in

Conditioned serum-free medium from umbilical cord mesenchymal stem cells has anti-photoaging properties

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Chronic exposure to solar radiation is the primary cause of photoaging and benign and malignant skin tumors. A conditioned serum-free medium (SFM) was prepared from umbilical cord mesenchymal stem cells (UC-MSCs) and its anti-photoaging effect, following chronic UV irradiation in vitro and in vivo, was evaluated. UC-MSC SFM had a stimulatory effect on human dermal fibroblast proliferation and reduced UVA-induced cell death. In addition, UC-MSC SFM blocked UVA inhibition of superoxide dismutase activity. Topical application of UC-MSC SFM to mouse skin prior to UV irradiation blocked the inhibition of superoxide dismutase and glutathione peroxidase activities, and prevented the upregulation of malonaldehyde. UC-MSC SFM thus protects against photoaging induced by UVA and UVB radiation and is a promising candidate for skin anti-photoaging treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Chen LW, Tredget EE, Wu PYG, Wu YJ (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):12

    Article  Google Scholar 

  • Chung HM, Won CH, Sung JH (2009) Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential. Expert Opin Biol Ther 9(12):1499–1508

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski D (2010) Strange lesions after stem-cell therapy. Nature 465(7301):997

    Article  PubMed  CAS  Google Scholar 

  • Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J (2012) Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B-Rev 18(2):101–115

    Article  PubMed  CAS  Google Scholar 

  • Farris PK (2005) Topical vitamin C: a useful agent for treating photoaging and other dermatologic conditions. Dermatol Surg 31(7):814–818

    PubMed  CAS  Google Scholar 

  • Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316(14):2213–2219

    Article  PubMed  CAS  Google Scholar 

  • Hong JP, Kim YW, Lee SK, Kim SH, Min KH (2008) The effect of continuous release of recombinant human epidermal growth factor (rh-EGF) in chitosan film on full thickness excisional porcine wounds. Ann Plast Surg 61(4):457–462

    Article  PubMed  CAS  Google Scholar 

  • Horwitz EM, Prather WR (2009) Cytokines as the major mechanism of mesenchymal stem cell clinical activity: expanding the spectrum of cell therapy. Isr Med Assoc J 11(4):209–211

    PubMed  Google Scholar 

  • Hou H, Li BF, Zhao X, Zhuang YL, Ren GY, Yan MY, Cai YP, Zhang XK, Chen L (2009) The effect of Pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice. Food Chem 115(3):945–950

    Article  CAS  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    Article  PubMed  CAS  Google Scholar 

  • Kestendjieva S, Kyurkchiev D, Tsvetkova G, Mehandjiev T, Dimitrov A, Nikolov A, Kyurkchiev S (2008) Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int 32(7):724–732

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS (2007) Wound heating effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD, Sung JH (2008a) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49(2):133–142

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Park SH, Ahn SJ, Kim HK, Park JS, Lee GY, Kim KJ, Whang KK, Kang SH, Park BS, Sung JH (2008b) Whitening effect of adipose-derived stem cells: a critical role of TGF-beta 1. Biol Pharm Bull 31(4):606–610

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Park BS, Park SH, Kim HK, Sung JH (2009a) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 53(2):96–102

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Park BS, Sung JH (2009b) Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch Dermatol Res 301(5):329–336

    Article  PubMed  Google Scholar 

  • Kim JH, Jung M, Kim HS, Kim YM, Choi EH (2011) Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol 20(5):383–387

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Raffa S, Flori E, Aspite N, Briganti S, Cardinali G, Torrisi MR, Picardo M (2009) Keratinocyte growth factor down-regulates intracellular ROS production induced by UVB. J Dermatol Sci 54(2):106–113

    Article  PubMed  CAS  Google Scholar 

  • Lau K, Paus R, Tiede S, Day P, Bayat A (2009) Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 18(11):921–933

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Jin SY, Song JS, Seo KK, Cho KH (2012) Paracrine effects of adipose-derived stem cells on keratinocytes and dermal fibroblasts. Ann Dermatol 24(2):136–143

    Article  PubMed  Google Scholar 

  • Merwald H, Klosner G, Kokesch C, Der-Petrossian M, Honigsmann H, Trautinger F (2005) UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J Photochem Photobiol B-Biol 79(3):197–207

    Article  CAS  Google Scholar 

  • Mizuno H, Tobita M, Uysal AC (2012) Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30(5):804–810

    Article  PubMed  CAS  Google Scholar 

  • Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302(2):71–83

    Article  PubMed  CAS  Google Scholar 

  • Ono I (2002) The effects of basic fibroblast growth factor (bFGF) on the breaking strength of acute incisional wounds. J Dermatol Sci 29(2):104–113

    Article  PubMed  CAS  Google Scholar 

  • Peres PS, Terra VA, Guarnier FA, Cecchini R, Cecchini AL (2011) Photoaging and chronological aging profile: understanding oxidation of the skin. J Photochem Photobiol B-Biol 103(2):93–97

    Article  CAS  Google Scholar 

  • Prantl L, Muehlberg F, Navone NM, Song YH, Vykoukal J, Logothetis CJ, Alt EU (2010) Adipose tissue-derived stem cells promote prostate tumor growth. Prostate 70(15):1709–1715

    Article  PubMed  CAS  Google Scholar 

  • Steenvoorden DPT, van Henegouwen G (1997) The use of endogenous antioxidants to improve photoprotection. J Photochem Photobiol B-Biol 41(1–2):1–10

    Article  CAS  Google Scholar 

  • Sze SK, de Kleijn DPV, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W, El Oakley RM, Lim S-K (2007) Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics 6(10):1680–1689

    Article  PubMed  CAS  Google Scholar 

  • Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98(11):1414–1421

    Article  PubMed  CAS  Google Scholar 

  • Won CH, Yoo HG, Kwon OS, Sung MY, Kang YJ, Chung JH, Park BS, Sung JH, Kim WS, Kim KH (2010) Hair growth promoting effects of adipose tissue-derived stem cells. J Dermatol Sci 57(2):134–137

    Article  PubMed  CAS  Google Scholar 

  • Yaar M, Gilchrest BA (2007) Photoageing: mechanism, prevention and therapy. Br J Dermatol 157(5):874–887

    Article  PubMed  CAS  Google Scholar 

  • Yoo BY, Shin YH, Yoon HH, Seo YK, Song KY, Park JK (2010) Application of mesenchymal stem cells derived from bone marrow and umbilical cord in human hair multiplication. J Dermatol Sci 60(2):74–83

    Article  PubMed  CAS  Google Scholar 

  • Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS, Lee JH, Baik CS, Kim A, Cho KS, Lee HH, Whang KY, You S (2010) Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cell Dev 19(6):887–902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Guangdong International Project (2010B050100022), the Guangdong University Scientific and Technological Achievements of Major Projects (cgzhzd0905) and the Fundamental Research Funds for the Central University (21612330) in R. P. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Wang.

Additional information

Qiuying Liu and Zhenyu Luo contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 811 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Luo, Z., He, S. et al. Conditioned serum-free medium from umbilical cord mesenchymal stem cells has anti-photoaging properties. Biotechnol Lett 35, 1707–1714 (2013). https://doi.org/10.1007/s10529-013-1242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1242-2

Keywords

Navigation