Skip to main content

Advertisement

Log in

Paeoniflorin, a monoterpene glycoside, attenuates lipopolysaccharide-induced neuronal injury and brain microglial inflammatory response

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Chronic activation of microglial cells endangers neuronal survival through the release of various proinflammatory and neurotoxic factors. Paeoniflorin (PF), a water-soluble monoterpene glycoside found in the root of Paeonia lactiflora Pall, has a wide range of pharmacological functions, such as anti-oxidant, anti-inflammatory, and anti-cancer effects. Neuroprotective potential of PF has also been demonstrated in animal models of neuropathologies. Here, we have examined the efficacy of PF in the repression of inflammation-induced neurotoxicity and microglial inflammatory response. In organotypic hippocampal slice cultures, PF significantly blocked lipopolysaccharide (LPS)-induced hippocampal cell death and productions of nitric oxide (NO) and interleukin (IL)-1β. PF also inhibited the LPS-stimulated productions of NO, tumor necrosis factor-α, and IL-1β from primary microglial cells. These results suggest that PF possesses neuroprotective activity by reducing the production of proinflammatory factors from activated microglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cao C, He X, Wang W, Zhang L, Lin H, Du L (2006) Kinetic distribution of paeoniflorin in cortex of normal and cerebral ischemia–reperfusion rats after intravenous administration of Paeoniae radix extract. Biomed Chromatogr 20:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Guo ZP, Jiao XY, Jia RZ, Zhang YH, Li JY, Huang XL, Liu HJ (2011) Paeoniflorin suppresses tumor necrosis factor-α induced chemokines production in human dermal microvascular endothelial cells by blocking nuclear factor-κB and ERK pathway. Arch Dermatol Res 303:351–360

    Article  PubMed  CAS  Google Scholar 

  • Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative disease? Mol Neurodegener 16:4–47

    Google Scholar 

  • Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  • Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G (2012) Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses. PLoS One 7:e49701

    Article  PubMed  CAS  Google Scholar 

  • Holopainen IE (2005) Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res 30:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Jung HY, Nam KN, Woo BC, Kim KP, Kim SO, Lee EH (2013) Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation. Mol Med Rep 7:154–158

    CAS  Google Scholar 

  • Kaur G, Han SJ, Yang I, Crane C (2010) Microglia and central nervous system immunity. Neurosurg Clin N Am 21:43–51

    Article  PubMed  Google Scholar 

  • Lee P, Lee J, Kim S, Lee MS, Yagita H, Kim SY, Kim H, Suk K (2001) NO as an autocrine mediator in the apoptosis of activated microglial cells: correlation between activation and apoptosis of microglial cells. Brain Res 892:380–385

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Yun SJ, Nam KN, Gho YS, Lee EH (2007) Activation of microglial cells by ceruloplasmin. Brain Res 1171:1–8

    Article  PubMed  CAS  Google Scholar 

  • Li JZ, Wu JH, Yu SY, Shao QR, Dong XM (2012) Inhibitory effects of paeoniflorin on lysophosphatidylcholine-induced inflammatory factor production in human umbilical vein endothelial cells. Int J Mol Med 31:493–497

    PubMed  Google Scholar 

  • Liu DZ, Xie KQ, Ji XQ, Ye Y, Jiang CL, Zhu XZ (2005) Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists. Br J Pharmacol 146:604–611

    Article  PubMed  CAS  Google Scholar 

  • Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ (2006) Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br J Pharmacol 148:314–325

    Article  PubMed  CAS  Google Scholar 

  • Liu DZ, Zhu J, Jin DZ, Zhang LM, Ji XQ, Ye Y, Tang CP, Zhu XZ (2007) Behavioral recovery following sub-chronic paeoniflorin administration in the striatal 6-OHDA lesion rodent model of Parkinson’s disease. J Ethnopharmacol 112:327–332

    Article  PubMed  CAS  Google Scholar 

  • Mao QQ, Zhong XM, Li ZY, Huang Z (2011) Paeoniflorin protects against NMDA-induced neurotoxicity in PC12 cells via Ca2+ antagonism. Phytother Res 25:681–685

    PubMed  CAS  Google Scholar 

  • McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  PubMed  CAS  Google Scholar 

  • McCarty MF (2006) Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 67:251–269

    Article  PubMed  Google Scholar 

  • Nam KN, Son MS, Park JH, Lee EH (2008) Shikonins attenuate microglial inflammatory responses by inhibition of ERK, Akt, and NF-κB: neuroprotective implications. Neuropharmacology 55:819–825

    Article  PubMed  CAS  Google Scholar 

  • Skaper SD (2007) The brain as a target for inflammatory processes and neuroprotective strategies. Ann NY Acad Sci 1122:23–34

    Article  PubMed  CAS  Google Scholar 

  • Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    Article  PubMed  CAS  Google Scholar 

  • Sugama S, Takenouchi T, Cho BP, Joh TH, Hashimoto M, Kitani H (2009) Possible roles of microglial cells for neurotoxicity in clinical neurodegenerative diseases and experimental animal models. Inflamm Allergy Drug Targets 8:277–284

    Article  PubMed  CAS  Google Scholar 

  • Tang NY, Liu CH, Hsieh CT, Hsieh CL (2010) The anti-inflammatory effect of paeoniflorin on cerebral infarction induced by ischemia–reperfusion injury in Sprague-Dawley rats. Am J Chin Med 38:51–64

    Article  PubMed  CAS  Google Scholar 

  • Vornov JJ, Tasker RC, Park J (1995) Neurotoxicity of acute glutamate transport blockade depends on coactivation of both NMDA and AMPA/kainite receptors in organotypic hippocampal cultures. Exp Neurol 133:7–17

    Article  PubMed  CAS  Google Scholar 

  • Wu SH, Wu DG, Chen YW (2010) Chemical constituents and bioactivities of plants from the genus Paeonia. Chem Biodivers 7:90–104

    Article  PubMed  CAS  Google Scholar 

  • Zhang GQ, Hao XM, Chen SZ, Zhou PA, Cheng HP, Wu CH (2003) Blockade of paeoniflorin on sodium current in mouse hippocampal CA1 neurons. Acta Pharmacol Sin 24:1248–1252

    PubMed  CAS  Google Scholar 

  • Zhong SZ, Ge QH, Li Q, Qu R, Ma SP (2009) Paeoniflorin attenuates Aβ(1–42)-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats. J Neurol Sci 280:71–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program (2010-0009164, the National Research Foundation, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunjoo H. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, KN., Yae, C.G., Hong, JW. et al. Paeoniflorin, a monoterpene glycoside, attenuates lipopolysaccharide-induced neuronal injury and brain microglial inflammatory response. Biotechnol Lett 35, 1183–1189 (2013). https://doi.org/10.1007/s10529-013-1192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1192-8

Keywords

Navigation